
ADUP/18CS55 Module1

Dept. of CSE BRCE

APPLICATION DEVELOPMENT USING PYTHON

[(Effective from the academic year 2018 -2019)

SEMESTER – V
Course Code 18CS55 IA Marks 40

Number of Lecture Hours/Week 03 Exam Marks 60

Total Number of Lecture Hours 40 Exam Hours 03

CREDITS – 03

Course Learning Objectives:This course (18CS55) will enable students to

 Learn the syntax and semantics of Python programming language.

 Illustrate the process of structuring the data using lists, tuples and dictionaries.

 Demonstrate the use of built-in functions to navigate the file system.

 Implement the Object Oriented Programming concepts in Python.

 Appraise the need for working with various documents like Excel, PDF, Word and Others.

Module – 1 Teaching

Hours

Python Basics, Entering Expressions into the Interactive Shell, The Integer, Floating-Point,
and String Data Types, String Concatenation and Replication, Storing Values in Variables,

Your First Program, Dissecting Your Program,Flow control, Boolean Values, Comparison

Operators, Boolean Operators,Mixing Boolean and Comparison Operators, Elements of Flow

Control, Program Execution, Flow Control Statements, Importing Modules,Ending a
Program Early with sys.exit(), Functions, def Statements with Parameters, Return Values

and return Statements,The None Value, Keyword Arguments and print(), Local and Global

Scope, The global Statement, Exception Handling, A Short Program: Guess the Number

Textbook 1: Chapters 1 – 3
RBT: L1, L2

08

Module – 2

Lists, The List Data Type, Working with Lists, Augmented Assignment Operators, Methods,

Example Program: Magic 8 Ball with a List, List-like Types: Strings and Tuples,References,
Dictionaries and Structuring Data, The Dictionary Data Type, Pretty Printing, Using Data

Structures to Model Real-World Things, Manipulating Strings, Working with Strings, Useful

String Methods, Project: Password Locker, Project: Adding Bullets to Wiki Markup Textbook

1: Chapters 4 – 6
RBT: L1, L2, L3

08

Module – 3

Pattern Matching with Regular Expressions, Finding Patterns of Text Without Regular

Expressions, Finding Patterns of Text with Regular Expressions,More Pattern Matching with

Regular Expressions, Greedy and Nongreedy Matching, The findall() Method, Character

Classes, Making Your Own Character Classes, The Caret and Dollar Sign Characters, The
Wildcard Character, Review of Regex Symbols, Case-Insensitive Matching, Substituting

Strings with the sub() Method, Managing Complex Regexes, Combining re .IGNORECASE,

re .DOTALL, and re .VERBOSE, Project: Phone Number and Email Address Extractor,
Reading and Writing Files, Files and File Paths, The os.path Module, The File

Reading/Writing Process, Saving Variables with the shelve Module,Saving Variables with

the pprint.pformat() Function, Project: Generating Random Quiz Files, Project:

Multiclipboard, Organizing Files, The shutil Module, Walking a Directory Tree,
Compressing Files with the zipfile Module, Project: Renaming Files with American-Style

Dates to European-Style Dates,Project: Backing Up a Folder into a ZIP File, Debugging,

Raising Exceptions, Getting the Traceback as a String, Assertions, Logging, IDLE‟s
Debugger.
Textbook 1: Chapters 7 – 10

08

RBT: L1, L2, L3

Module – 4

ADUP/18CS55 Module1

Dept. of CSE BRCE

Classes and objects, Programmer-defined types, Attributes, Rectangles, Instances as return

values, Objects are mutable, Copying, Classes and functions, Time, Pure functions,

Modifiers, Prototyping versus planning, Classes and methods, Object-oriented features,
Printing objects, Another example, A more complicated example,The init method, The

 str method, Operator overloading, Type-based dispatch, Polymorphism, Interface and

implementation,Inheritance, Card objects, Class attributes, Comparing cards, Decks, Printing

the deck, Add, remove, shuffle and sort, Inheritance, Class diagrams, Data encapsulation

Textbook 2: Chapters 15 – 18

RBT: L1, L2, L3

08

Module – 5

Web Scraping, Project: MAPIT.PY with the webbrowser Module, Downloading Files from

the Web with the requests Module, Saving Downloaded Files to the Hard Drive, HTML,

Parsing HTML with the BeautifulSoup Module, Project: “I‟m Feeling Lucky” Google
Search,Project: Downloading All XKCD Comics, Controlling the Browser with the selenium

Module, Working with Excel Spreadsheets, Excel Documents, Installing the openpyxl

Module, Reading Excel Documents, Project: Reading Data from a Spreadsheet, Writing Excel
Documents, Project: Updating a Spreadsheet, Setting the Font Style of Cells, Font Objects,

Formulas, Adjusting Rows and Columns, Charts, Working with PDF and Word Documents,

PDF Documents, Project: Combining Select Pages from Many PDFs, Word Documents,

Working with CSV files and JSON data, The csv Module, Project: Removing the Header
from CSV Files, JSON and APIs, The json Module, Project: Fetching Current Weather Data

Textbook 1: Chapters 11 – 14

RBT: L1, L2, L3

08

Course Outcomes: After studying this course, students will be able to

 Demonstrate proficiency in handling of loops and creation of functions.

 Identify the methods to create and manipulate lists, tuples and dictionaries.

 Discover the commonly used operations involving regular expressions and file system.

 Interpret the concepts of Object-Oriented Programming as used in Python.

 Determine the need for scraping websites and working with CSV, JSON and other file formats.

Question paper pattern:

 The question paper will have ten questions.

 Each full Question consisting of 20 marks

 There will be 2 full questions (with a maximum of four sub questions) from each module.

 Each full question will have sub questions covering all the topics under a module.

 The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. Al Sweigart,“Automate the Boring Stuff with Python”,1stEdition, No Starch Press, 2015.

(Available under CC-BY-NC-SA license at https://automatetheboringstuff.com/)

(Chapters 1 to 18)
2. Allen B. Downey, “Think Python: How to Think Like a Computer Scientist”, 2nd Edition,

Green Tea Press, 2015. (Available under CC-BY-NC license at

http://greenteapress.com/thinkpython2/thinkpython2.pdf)
(Chapters 13, 15, 16, 17, 18) (Download pdf/html files from the above links)

Reference Books:

1. Gowrishankar S, Veena A, “Introduction to Python Programming”, 1st Edition, CRC
Press/Taylor & Francis, 2018. ISBN-13: 978-0815394372

http://greenteapress.com/thinkpython2/thinkpython2.pdf)

ADUP/18CS55 Module1

Dept. of CSE BRCE

PYTHON BASICS

The Python programming language has a wide range of syntactical constructions, standard

library functions, and interactive development environment features. Fortunately, you can

ignore most of that; you just need to learn enough to write some handy little programs.

You will, however, have to learn some basic programming concepts before you can do

anything. Like a wizard in training, you might think these concepts seem arcane and tedious,

but with some knowledge and practice, you’ll be able to command your computer like a

magic wand and perform incredible feats.

This chapter has a few examples that encourage you to type into the interactive shell, also

called the REPL (Read-Evaluate-Print Loop), which lets you run (or execute) Python

instructions one at a time and instantly shows you the results. Using the interactive shell is

great for learning what basic Python instructions do, so give it a try as you follow along.

You’ll remember the things you do much better than the things you only read.

ENTERING EXPRESSIONS INTO THE INTERACTIVE SHELL

You can run the interactive shell by launching the Mu editor, which you should have

downloaded when going through the setup instructions in the Preface. On Windows, open the

Start menu, type “Mu,” and open the Mu app. On macOS, open your Applications folder and

double-click Mu. Click the New button and save an empty file as blank.py. When you run

this blank file by clicking the Run button or pressing F5, it will open the interactive shell,

which will open as a new pane that opens at the bottom of the Mu editor’s window. You

should see a >>> prompt in the interactive shell.

Enter 2 + 2 at the prompt to have Python do some simple math. The Mu window should

now look like this:

>>> 2 + 2

4

>>>

In Python, 2 + 2 is called an expression, which is the most basic kind of programming

instruction in the language. Expressions consist of values (such as 2) and operators (such

as +), and they can always evaluate (that is, reduce) down to a single value. That means you

can use expressions anywhere in Python code that you could also use a value.

In the previous example, 2 + 2 is evaluated down to a single value, 4. A single value with

no operators is also considered an expression, though it evaluates only to itself, as shown

here:

>>> 2

2

ERRORS ARE OKAY!

Programs will crash if they contain code the computer can’t understand, which will cause

Python to show an error message. An error message won’t break your computer, though, so

don’t be afraid to make mistakes. A crash just means the program stopped running

unexpectedly.

ADUP/18CS55 Module1

Dept. of CSE BRCE

You can use plenty of other operators in Python expressions, too. For example, Table 1-

1 lists all the math operators in Python.

Table 1-1: Math Operators from Highest to Lowest Precedence

Operator Operation Example Evaluates to . . .

** Exponent 2 ** 3 8

% Modulus/remainder 22 % 8 6

// Integer division/floored quotient 22 // 8 2

/ Division 22 / 8 2.75

* Multiplication 3 * 5 15

- Subtraction 5 - 2 3

+ Addition 2 + 2 4

The order of operations (also called precedence) of Python math operators is similar to

that of mathematics. The ** operator is evaluated first; the *, /, //, and % operators are

evaluated next, from left to right; and the + and - operators are evaluated last (also from left

to right). You can use parentheses to override the usual precedence if you need to.

Whitespace in between the operators and values doesn’t matter for Python (except for the

indentation at the beginning of the line), but a single space is convention. Enter the following

expressions into the interactive shell:

>>> 2 + 3 * 6

20

>>> (2 + 3) * 6

30

>>> 48565878 * 578453

28093077826734

>>> 2 ** 8

256

>>> 23 / 7

3.2857142857142856

>>> 23 // 7

3

>>> 23 % 7

2

>>> 2 + 2

4

>>> (5 - 1) * ((7 + 1) / (3 - 1))

16.0

If you want to know more about an error, you can search for the exact error message text

online for more information. You can also check out the resources

at https://nostarch.com/automatestuff2/ to see a list of common Python error messages and

their meanings.

https://automatetheboringstuff.com/2e/chapter1/#calibre_link-1652
https://automatetheboringstuff.com/2e/chapter1/#calibre_link-1652
https://nostarch.com/automatestuff2/

ADUP/18CS55 Module1

Dept. of CSE BRCE

In each case, you as the programmer must enter the expression, but Python does the hard

part of evaluating it down to a single value. Python will keep evaluating parts of the

expression until it becomes a single value, as shown here:

These rules for putting operators and values together to form expressions are a

fundamental part of Python as a programming language, just like the grammar rules that help

us communicate. Here’s an example:

This is a grammatically correct English sentence.

This grammatically is sentence not English correct a.

The second line is difficult to parse because it doesn’t follow the rules of English.

Similarly, if you enter a bad Python instruction, Python won’t be able to understand it and

will display a SyntaxError error message, as shown here:

>>> 5 +

File "<stdin>", line 1

5 +

^

SyntaxError: invalid syntax

>>> 42 + 5 + * 2

File "<stdin>", line 1

42 + 5 + * 2

^

SyntaxError: invalid syntax

You can always test to see whether an instruction works by entering it into the interactive

shell. Don’t worry about breaking the computer: the worst that could happen is that Python

responds with an error message. Professional software developers get error messages while

writing code all the time.

THE INTEGER, FLOATING-POINT, AND STRING DATA TYPES

Remember that expressions are just values combined with operators, and they always

evaluate down to a single value. A data type is a category for values, and every value belongs

to exactly one data type. The most common data types in Python are listed in Table 1-2. The

values -2 and 30, for example, are said to be integer values. The integer (or int) data type

https://automatetheboringstuff.com/2e/chapter1/#calibre_link-1653

ADUP/18CS55 Module1

Dept. of CSE BRCE

indicates values that are whole numbers. Numbers with a decimal point, such as 3.14, are

called floating-point numbers (or floats). Note that even though the value 42 is an integer, the

value 42.0 would be a floating-point number.

Table 1-2: Common Data Types

Data type Examples

Integers -2, -1, 0, 1, 2, 3, 4, 5

Floating-point numbers -1.25, -1.0, -0.5, 0.0, 0.5, 1.0, 1.25

Strings 'a', 'aa', 'aaa', 'Hello!', '11 cats'

Python programs can also have text values called strings, or strs (pronounced “stirs”).

Always surround your string in single quote (') characters (as in 'Hello' or 'Goodbye cruel

world!') so Python knows where the string begins and ends. You can even have a string with

no characters in it, '', called a blank string or an empty string. Strings are explained in greater

detail in Chapter 4.

If you ever see the error message SyntaxError: EOL while scanning string literal, you

probably forgot the final single quote character at the end of the string, such as in this

example:

>>> 'Hello, world!

SyntaxError: EOL while scanning string literal

STRING CONCATENATION AND REPLICATION

The meaning of an operator may change based on the data types of the values next to it. For

example, + is the addition operator when it operates on two integers or floating-point values.

However, when + is used on two string values, it joins the strings as the string

concatenation operator. Enter the following into the interactive shell:

>>> 'Alice' + 'Bob'

'AliceBob'

The expression evaluates down to a single, new string value that combines the text of the

two strings. However, if you try to use the + operator on a string and an integer value, Python

will not know how to handle this, and it will display an error message.

>>> 'Alice' + 42

Traceback (most recent call last):
File "<pyshell#0>", line 1, in <module>

'Alice' + 42

TypeError: can only concatenate str (not "int") to str

The error message can only concatenate str (not "int") to str means that Python thought

you were trying to concatenate an integer to the string 'Alice'. Your code will have to

explicitly convert the integer to a string because Python cannot do this automatically.

(Converting data types will be explained in “Dissecting Your Program” on page 13 when we

talk about the str(), int(), and float() functions.)

https://automatetheboringstuff.com/2e/chapter1/#calibre_link-152
https://automatetheboringstuff.com/2e/chapter1/#calibre_link-97
https://automatetheboringstuff.com/2e/chapter1/#calibre_link-762

ADUP/18CS55 Module1

Dept. of CSE BRCE

The * operator multiplies two integer or floating-point values. But when the * operator is

used on one string value and one integer value, it becomes the string replication operator.

Enter a string multiplied by a number into the interactive shell to see this in action.

>>> 'Alice' * 5

'AliceAliceAliceAliceAlice'

The expression evaluates down to a single string value that repeats the original string a

number of times equal to the integer value. String replication is a useful trick, but it’s not

used as often as string concatenation.

The * operator can be used with only two numeric values (for multiplication), or one

string value and one integer value (for string replication). Otherwise, Python will just display

an error message, like the following:

>>> 'Alice' * 'Bob'

Traceback (most recent call last):

File "<pyshell#32>", line 1, in <module>

'Alice' * 'Bob'

TypeError: can't multiply sequence by non-int of type 'str'

>>> 'Alice' * 5.0

Traceback (most recent call last):

File "<pyshell#33>", line 1, in <module>

'Alice' * 5.0

TypeError: can't multiply sequence by non-int of type 'float'

It makes sense that Python wouldn’t understand these expressions: you can’t multiply two

words, and it’s hard to replicate an arbitrary string a fractional number of times.

STORING VALUES IN VARIABLES

A variable is like a box in the computer’s memory where you can store a single value. If you

want to use the result of an evaluated expression later in your program, you can save it inside

a variable.

Assignment Statements

You’ll store values in variables with an assignment statement. An assignment statement

consists of a variable name, an equal sign (called the assignment operator), and the value to

be stored. If you enter the assignment statement spam = 42, then a variable named spam will

have the integer value 42 stored in it.

Think of a variable as a labeled box that a value is placed in, as in Figure 1-1.

https://automatetheboringstuff.com/2e/chapter1/#calibre_link-1654

ADUP/18CS55 Module1

Dept. of CSE BRCE

Figure 1-1: spam = 42 is like telling the program, “The variable spam now has the integer

value 42 in it.”

For example, enter the following into the interactive shell:

➊ >>> spam = 40

>>> spam

40

>>> eggs = 2

➋ >>> spam + eggs

42
>>> spam + eggs + spam

82

➌ >>> spam = spam + 2

>>> spam

42

A variable is initialized (or created) the first time a value is stored in it ➊. After that, you

can use it in expressions with other variables and values ➋. When a variable is assigned a

new value ➌, the old value is forgotten, which is why spam evaluated to 42 instead of 40 at

the end of the example. This is called overwriting the variable. Enter the following code into

the interactive shell to try overwriting a string:

>>> spam = 'Hello'

>>> spam

'Hello'

>>> spam = 'Goodbye'

>>> spam

'Goodbye'

Just like the box in Figure 1-2, the spam variable in this example stores 'Hello' until you

replace the string with 'Goodbye'.

https://automatetheboringstuff.com/2e/chapter1/#calibre_link-1655

ADUP/18CS55 Module1

Dept. of CSE BRCE

Figure 1-2: When a new value is assigned to a variable, the old one is forgotten.

Variable Names

A good variable name describes the data it contains. Imagine that you moved to a new house

and labeled all of your moving boxes as Stuff. You’d never find anything! Most of this book’s

examples (and Python’s documentation) use generic variable names like spam, eggs,

and bacon, which come from the Monty Python “Spam” sketch. But in your programs, a

descriptive name will help make your code more readable.

Though you can name your variables almost anything, Python does have some naming

restrictions. Table 1-3 has examples of legal variable names. You can name a variable

anything as long as it obeys the following three rules:

 It can be only one word with no spaces.

 It can use only letters, numbers, and the underscore (_) character.

 It can’t begin with a number.

Table 1-3: Valid and Invalid Variable Names

Valid variable names Invalid variable names

current_balance current-balance (hyphens are not allowed)

currentBalance current balance (spaces are not allowed)

account4 4account (can’t begin with a number)

_42 42 (can’t begin with a number)

https://automatetheboringstuff.com/2e/chapter1/#calibre_link-1656

ADUP/18CS55 Module1

Dept. of CSE BRCE

Valid variable names Invalid variable names

TOTAL_SUM TOTAL_$UM (special characters like $ are not allowed)

hello 'hello' (special characters like ' are not allowed)

Variable names are case-sensitive, meaning that spam, SPAM, Spam, and sPaM are four

different variables. Though Spam is a valid variable you can use in a program, it is a Python

convention to start your variables with a lowercase letter.

This book uses camelcase for variable names instead of underscores; that is,

variables lookLikeThis instead of looking_like_this. Some experienced programmers may

point out that the official Python code style, PEP 8, says that underscores should be used. I

unapologetically prefer camelcase and point to the “A Foolish Consistency Is the Hobgoblin

of Little Minds” section in PEP 8 itself:

Consistency with the style guide is important. But most importantly: know when

to be inconsistent—sometimes the style guide just doesn’t apply. When in doubt,

use your best judgment.

YOUR FIRST PROGRAM

While the interactive shell is good for running Python instructions one at a time, to write

entire Python programs, you’ll type the instructions into the file editor. The file editor is

similar to text editors such as Notepad or TextMate, but it has some features specifically for

entering source code. To open a new file in Mu, click the New button on the top row.

The window that appears should contain a cursor awaiting your input, but it’s different

from the interactive shell, which runs Python instructions as soon as you press ENTER. The

file editor lets you type in many instructions, save the file, and run the program. Here’s how

you can tell the difference between the two:

 The interactive shell window will always be the one with the >>> prompt.

 The file editor window will not have the >>> prompt.

Now it’s time to create your first program! When the file editor window opens, enter the

following into it:

➊ # This program says hello and asks for my name.

➋ print('Hello, world!')

print('What is your name?') # ask for their name

➌ myName = input()

➍ print('It is good to meet you, ' + myName)

➎ print('The length of your name is:')

print(len(myName))

➏ print('What is your age?') # ask for their age

myAge = input()

print('You will be ' + str(int(myAge) + 1) + ' in a year.')

Once you’ve entered your source code, save it so that you won’t have to retype it each

time you start Mu. Click the Save button, enter hello.py in the File Name field, and then

click Save.

ADUP/18CS55 Module1

Dept. of CSE BRCE

You should save your programs every once in a while as you type them. That way, if the

computer crashes or you accidentally exit Mu, you won’t lose the code. As a shortcut, you

can press CTRL-S on Windows and Linux or -S on macOS to save your file.

Once you’ve saved, let’s run our program. Press the F5 key. Your program should run in

the interactive shell window. Remember, you have to press F5 from the file editor window,

not the interactive shell window. Enter your name when your program asks for it. The

program’s output in the interactive shell should look something like this:

Python 3.7.0b4 (v3.7.0b4:eb96c37699, May 2 2018, 19:02:22) [MSC v.1913 64 bit

(AMD64)] on win32

Type "copyright", "credits" or "license()" for more information.

>>> ================================ RESTART

================================

>>>

Hello, world!

What is your name?

Al

It is good to meet you, Al

The length of your name is:

2

What is your age?

4

You will be 5 in a year.

>>>

When there are no more lines of code to execute, the Python program terminates; that is, it

stops running. (You can also say that the Python program exits.)

You can close the file editor by clicking the X at the top of the window. To reload a saved

program, select File▸Open... from the menu. Do that now, and in the window that appears,

choose hello.py and click the Open button. Your previously saved hello.py program should

open in the file editor window.

You can view the execution of a program using the Python Tutor visualization tool

at http://pythontutor.com/. You can see the execution of this particular program

at https://autbor.com/hellopy/. Click the forward button to move through each step of the

program’s execution. You’ll be able to see how the variables’ values and the output change.

DISSECTING YOUR PROGRAM

With your new program open in the file editor, let’s take a quick tour of the Python

instructions it uses by looking at what each line of code does.

Comments

The following line is called a comment.

➊ # This program says hello and asks for my name.

Python ignores comments, and you can use them to write notes or remind yourself what

the code is trying to do. Any text for the rest of the line following a hash mark (#) is part of a

comment.

http://pythontutor.com/
https://autbor.com/hellopy/

ADUP/18CS55 Module1

Dept. of CSE BRCE

Sometimes, programmers will put a # in front of a line of code to temporarily remove it

while testing a program. This is called commenting out code, and it can be useful when

you’re trying to figure out why a program isn’t working. You can remove the # later when

you are ready to put the line back in.

Python also ignores the blank line after the comment. You can add as many blank lines to

your program as you want. This can make your code easier to read, like paragraphs in a book.

The print() Function

The print() function displays the string value inside its parentheses on the screen.

➋ print('Hello, world!')

print('What is your name?') # ask for their name

The line print('Hello, world!') means “Print out the text in the string 'Hello, world!'.”

When Python executes this line, you say that Python is calling the print() function and the

string value is being passed to the function. A value that is passed to a function call is

an argument. Notice that the quotes are not printed to the screen. They just mark where the

string begins and ends; they are not part of the string value.

NOTE

You can also use this function to put a blank line on the screen; just call print() with

nothing in between the parentheses.

When you write a function name, the opening and closing parentheses at the end identify

it as the name of a function. This is why in this book, you’ll see print() rather

than print. Chapter 3 describes functions in more detail.

The input() Function

The input() function waits for the user to type some text on the keyboard and press ENTER.

➌ myName = input()

This function call evaluates to a string equal to the user’s text, and the line of code assigns

the myName variable to this string value.

You can think of the input() function call as an expression that evaluates to whatever

string the user typed in. If the user entered 'Al', then the expression would evaluate

to myName = 'Al'.

If you call input() and see an error message, like NameError: name 'Al' is not defined, the

problem is that you’re running the code with Python 2 instead of Python 3.

Printing the User’s Name

The following call to print() actually contains the expression 'It is good to meet you, ' +

myName between the parentheses.

➍ print('It is good to meet you, ' + myName)

https://automatetheboringstuff.com/2e/chapter1/#calibre_link-132

ADUP/18CS55 Module1

Dept. of CSE BRCE

Remember that expressions can always evaluate to a single value. If 'Al' is the value

stored in myName on line ➌, then this expression evaluates to 'It is good to meet you, Al'.

This single string value is then passed to print(), which prints it on the screen.

The len() Function

You can pass the len() function a string value (or a variable containing a string), and the

function evaluates to the integer value of the number of characters in that string.

➎ print('The length of your name is:')

print(len(myName))

Enter the following into the interactive shell to try this:

>>> len('hello')

5

>>> len('My very energetic monster just scarfed nachos.')

46

>>> len('')

0

Just like those examples, len(myName) evaluates to an integer. It is then passed

to print() to be displayed on the screen. The print() function allows you to pass it either

integer values or string values, but notice the error that shows up when you type the

following into the interactive shell:

>>> print('I am ' + 29 + ' years old.')

Traceback (most recent call last):

File "<pyshell#6>", line 1, in <module>

print('I am ' + 29 + ' years old.')

TypeError: can only concatenate str (not "int") to str

The print() function isn’t causing that error, but rather it’s the expression you tried to pass

to print(). You get the same error message if you type the expression into the interactive shell

on its own.

>>> 'I am ' + 29 + ' years old.'

Traceback (most recent call last):

File "<pyshell#7>", line 1, in <module>

'I am ' + 29 + ' years old.'

TypeError: can only concatenate str (not "int") to str

Python gives an error because the + operator can only be used to add two integers together

or concatenate two strings. You can’t add an integer to a string, because this is

ungrammatical in Python. You can fix this by using a string version of the integer instead, as

explained in the next section.

The str(), int(), and float() Functions

ADUP/18CS55 Module1

Dept. of CSE BRCE

If you want to concatenate an integer such as 29 with a string to pass to print(), you’ll need to

get the value '29', which is the string form of 29. The str() function can be passed an integer

value and will evaluate to a string value version of the integer, as follows:

>>> str(29)

'29'

>>> print('I am ' + str(29) + ' years old.')

I am 29 years old.

Because str(29) evaluates to '29', the expression 'I am ' + str(29) + ' years old.' evaluates

to 'I am ' + '29' + ' years old.', which in turn evaluates to 'I am 29 years old.'. This is the value

that is passed to the print() function.

The str(), int(), and float() functions will evaluate to the string, integer, and floating-point

forms of the value you pass, respectively. Try converting some values in the interactive shell

with these functions and watch what happens.

>>> str(0)

'0'
>>> str(-3.14)

'-3.14'

>>> int('42')

42

>>> int('-99')

-99

>>> int(1.25)

1

>>> int(1.99)

1

>>> float('3.14')

3.14

>>> float(10)

10.0

The previous examples call the str(), int(), and float() functions and pass them values of

the other data types to obtain a string, integer, or floating-point form of those values.

The str() function is handy when you have an integer or float that you want to concatenate

to a string. The int() function is also helpful if you have a number as a string value that you

want to use in some mathematics. For example, the input() function always returns a string,

even if the user enters a number. Enter spam = input() into the interactive shell and

enter 101 when it waits for your text.

>>> spam = input()

101

>>> spam

'101'

ADUP/18CS55 Module1

Dept. of CSE BRCE

The value stored inside spam isn’t the integer 101 but the string '101'. If you want to do

math using the value in spam, use the int() function to get the integer form of spam and then

store this as the new value in spam.

>>> spam = int(spam)

>>> spam

101

Now you should be able to treat the spam variable as an integer instead of a string.

>>> spam * 10 / 5

202.0

Note that if you pass a value to int() that it cannot evaluate as an integer, Python will

display an error message.

>>> int('99.99')

Traceback (most recent call last):

File "<pyshell#18>", line 1, in <module>

int('99.99')

ValueError: invalid literal for int() with base 10: '99.99'

>>> int('twelve')

Traceback (most recent call last):

File "<pyshell#19>", line 1, in <module>

int('twelve')

ValueError: invalid literal for int() with base 10: 'twelve'

The int() function is also useful if you need to round a floating-point number down.

>>> int(7.7)

7

>>> int(7.7) + 1

8

You used the int() and str() functions in the last three lines of your program to get a value

of the appropriate data type for the code.

➏ print('What is your age?') # ask for their age

myAge = input()

print('You will be ' + str(int(myAge) + 1) + ' in a year.')

TEXT AND NUMBER EQUIVALENCE

Although the string value of a number is considered a completely different value from the

integer or floating-point version, an integer can be equal to a floating point.

ADUP/18CS55 Module1

Dept. of CSE BRCE

The myAge variable contains the value returned from input(). Because the input() function

always returns a string (even if the user typed in a number), you can use the int(myAge) code

to return an integer value of the string in myAge. This integer value is then added to 1 in the

expression int(myAge) + 1.

The result of this addition is passed to the str() function: str(int(myAge) + 1). The string

value returned is then concatenated with the strings 'You will be ' and ' in a year.' to evaluate

to one large string value. This large string is finally passed to print() to be displayed on the

screen.

Let’s say the user enters the string '4' for myAge. The string '4' is converted to an integer,

so you can add one to it. The result is 5. The str() function converts the result back to a string,

so you can concatenate it with the second string, 'in a year.', to create the final message.

These evaluation steps would look something like the following:

1. Which of the following are operators, and which are values?

*

'hello'

-88.8
-

/

>>> 42 == '42'

False

>>> 42 == 42.0

True

>>> 42.0 == 0042.000

True

Python makes this distinction because strings are text, while integers and floats are both

numbers.

ADUP/18CS55 Module1

Dept. of CSE BRCE

+

5

2. Which of the following is a variable, and which is a string?

spam

'spam'

3. Name three data types.

4. What is an expression made up of? What do all expressions do?

5. This chapter introduced assignment statements, like spam = 10. What is the difference

between an expression and a statement?

6. What does the variable bacon contain after the following code runs?

bacon = 20

bacon + 1

7. What should the following two expressions evaluate to?

'spam' + 'spamspam'

'spam' * 3

8. Why is eggs a valid variable name while 100 is invalid?

9. What three functions can be used to get the integer, floating-point number, or string

version of a value?

10. Why does this expression cause an error? How can you fix it?

'I have eaten ' + 99 + ' burritos.'

Extra credit: Search online for the Python documentation for the len() function. It will

be on a web page titled “Built-in Functions.” Skim the list of other functions Python has,

look up what the round() function does, and experiment with it in the interactive shell.

ADUP/18CS55 Module1

Dept. of CSE BRCE

FLOW CONTROL

So, you know the basics of individual instructions and that a program is just a series of

instructions. But programming’s real strength isn’t just running one instruction after another

like a weekend errand list. Based on how expressions evaluate, a program can decide to skip

instructions, repeat them, or choose one of several instructions to run. In fact, you almost

never want your programs to start from the first line of code and simply execute every line,

straight to the end. Flow control statements can decide which Python instructions to execute

under which conditions.

These flow control statements directly correspond to the symbols in a flowchart, so I’ll

provide flowchart versions of the code discussed in this chapter. Figure 2-1 shows a

flowchart for what to do if it’s raining. Follow the path made by the arrows from Start to End.

Figure 2-1: A flowchart to tell you what to do if it is raining

In a flowchart, there is usually more than one way to go from the start to the end. The

same is true for lines of code in a computer program. Flowcharts represent these branching

points with diamonds, while the other steps are represented with rectangles. The starting and

ending steps are represented with rounded rectangles.

But before you learn about flow control statements, you first need to learn how to

represent those yes and no options, and you need to understand how to write those branching

points as Python code. To that end, let’s explore Boolean values, comparison operators, and

Boolean operators.

https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1533

ADUP/18CS55 Module1

Dept. of CSE BRCE

BOOLEAN VALUES

While the integer, floating-point, and string data types have an unlimited number of possible

values, the Boolean data type has only two values: True and False. (Boolean is capitalized

because the data type is named after mathematician George Boole.) When entered as Python

code, the Boolean values True and False lack the quotes you place around strings, and they

always start with a capital T or F, with the rest of the word in lowercase. Enter the following

into the interactive shell. (Some of these instructions are intentionally incorrect, and they’ll

cause error messages to appear.)

➊ >>> spam = True

>>> spam

True

➋ >>> true

Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>

true

NameError: name 'true' is not defined

➌ >>> True = 2 + 2

SyntaxError: can't assign to keyword

Like any other value, Boolean values are used in expressions and can be stored in

variables ➊. If you don’t use the proper case ➋ or you try to use True and False for variable

names ➌, Python will give you an error message.

COMPARISON OPERATORS

Comparison operators, also called relational operators, compare two values and evaluate

down to a single Boolean value. Table 2-1 lists the comparison operators.

Table 2-1: Comparison Operators

Operator Meaning

== Equal to

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

These operators evaluate to True or False depending on the values you give them. Let’s

try some operators now, starting with == and !=.

>>> 42 == 42

True
>>> 42 == 99

https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1534

ADUP/18CS55 Module1

Dept. of CSE BRCE

False

>>> 2 != 3

True

>>> 2 != 2

False

As you might expect, == (equal to) evaluates to True when the values on both sides are

the same, and != (not equal to) evaluates to True when the two values are different.

The == and != operators can actually work with values of any data type.

>>> 'hello' == 'hello'

True

>>> 'hello' == 'Hello'

False

>>> 'dog' != 'cat'

True

>>> True == True

True

>>> True != False

True

>>> 42 == 42.0

True

➊ >>> 42 == '42'

False

Note that an integer or floating-point value will always be unequal to a string value. The

expression 42 == '42' ➊ evaluates to False because Python considers the integer 42 to be

different from the string '42'.

The <, >, <=, and >= operators, on the other hand, work properly only with integer and

floating-point values.

>>> 42 < 100

True

>>> 42 > 100

False

>>> 42 < 42

False

>>> eggCount = 42

➊ >>> eggCount <= 42

True
>>> myAge = 29

➋ >>> myAge >= 10

True

THE DIFFERENCE BETWEEN THE == AND = OPERATORS

You might have noticed that the == operator (equal to) has two equal signs, while

the = operator (assignment) has just one equal sign. It’s easy to confuse these two operators

with each other. Just remember these points:

ADUP/18CS55 Module1

Dept. of CSE BRCE

You’ll often use comparison operators to compare a variable’s value to some other value,

like in the eggCount <= 42 ➊ and myAge >= 10 ➋ examples. (After all, instead of

entering 'dog' != 'cat' in your code, you could have just entered True.) You’ll see more

examples of this later when you learn about flow control statements.

BOOLEAN OPERATORS

The three Boolean operators (and, or, and not) are used to compare Boolean values. Like

comparison operators, they evaluate these expressions down to a Boolean value. Let’s

explore these operators in detail, starting with the and operator.

Binary Boolean Operators

The and and or operators always take two Boolean values (or expressions), so they’re

considered binary operators. The and operator evaluates an expression

to True if both Boolean values are True; otherwise, it evaluates to False. Enter some

expressions using and into the interactive shell to see it in action.

>>> True and True

True
>>> True and False

False

A truth table shows every possible result of a Boolean operator. Table 2-2 is the truth

table for the and operator.

Table 2-2: The and Operator’s Truth Table

Expression Evaluates to . . .

True and True True

True and False False

False and True False

False and False False

On the other hand, the or operator evaluates an expression to True if either of the two

Boolean values is True. If both are False, it evaluates to False.

>>> False or True

True

>>> False or False

False

You can see every possible outcome of the or operator in its truth table, shown in Table 2-

3.

To help remember which is which, notice that the == operator (equal to) consists of two

characters, just like the != operator (not equal to) consists of two characters.

 The == operator (equal to) asks whether two values are the same as each other.

 The = operator (assignment) puts the value on the right into the variable on the left.

https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1535
https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1536
https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1536

ADUP/18CS55 Module1

Dept. of CSE BRCE

Table 2-3: The or Operator’s Truth Table

Expression Evaluates to . . .

True or True True

True or False True

False or True True

False or False False

The not Operator

Unlike and and or, the not operator operates on only one Boolean value (or expression). This

makes it a unary operator. The not operator simply evaluates to the opposite Boolean value.

>>> not True

False

➊ >>> not not not not True

True

Much like using double negatives in speech and writing, you can nest not operators ➊,

though there’s never not no reason to do this in real programs. Table 2-4 shows the truth table
for not.

Table 2-4: The not Operator’s Truth Table

Expression Evaluates to . . .

not True False

not False True

MIXING BOOLEAN AND COMPARISON OPERATORS

Since the comparison operators evaluate to Boolean values, you can use them in expressions

with the Boolean operators.

Recall that the and, or, and not operators are called Boolean operators because they

always operate on the Boolean values True and False. While expressions like 4 < 5 aren’t

Boolean values, they are expressions that evaluate down to Boolean values. Try entering

some Boolean expressions that use comparison operators into the interactive shell.

>>> (4 < 5) and (5 < 6)

True
>>> (4 < 5) and (9 < 6)

False

>>> (1 == 2) or (2 == 2)

True

The computer will evaluate the left expression first, and then it will evaluate the right

expression. When it knows the Boolean value for each, it will then evaluate the whole

expression down to one Boolean value. You can think of the computer’s evaluation process

for (4 < 5) and (5 < 6) as the following:

https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1537

ADUP/18CS55 Module1

Dept. of CSE BRCE

You can also use multiple Boolean operators in an expression, along with the comparison

operators:

>>> 2 + 2 == 4 and not 2 + 2 == 5 and 2 * 2 == 2 + 2

True

The Boolean operators have an order of operations just like the math operators do. After

any math and comparison operators evaluate, Python evaluates the not operators first, then

the and operators, and then the or operators.

ELEMENTS OF FLOW CONTROL

Flow control statements often start with a part called the condition and are always followed

by a block of code called the clause. Before you learn about Python’s specific flow control

statements, I’ll cover what a condition and a block are.

Conditions

The Boolean expressions you’ve seen so far could all be considered conditions, which are the

same thing as expressions; condition is just a more specific name in the context of flow

control statements. Conditions always evaluate down to a Boolean value, True or False. A

flow control statement decides what to do based on whether its condition is True or False,

and almost every flow control statement uses a condition.

Blocks of Code

Lines of Python code can be grouped together in blocks. You can tell when a block begins

and ends from the indentation of the lines of code. There are three rules for blocks.

 Blocks begin when the indentation increases.

 Blocks can contain other blocks.

 Blocks end when the indentation decreases to zero or to a containing block’s indentation.

Blocks are easier to understand by looking at some indented code, so let’s find the blocks

in part of a small game program, shown here:

name = 'Mary'

password = 'swordfish'

if name == 'Mary':

➊ print('Hello, Mary')

if password == 'swordfish':

➋ print('Access granted.')

ADUP/18CS55 Module1

Dept. of CSE BRCE

else:

➌ print('Wrong password.')

You can view the execution of this program at https://autbor.com/blocks/. The first block

of code ➊ starts at the line print('Hello, Mary') and contains all the lines after it. Inside this

block is another block ➋, which has only a single line in it: print('Access Granted.'). The

third block ➌ is also one line long: print('Wrong password.').

PROGRAM EXECUTION

In the previous chapter’s hello.py program, Python started executing instructions at the top of

the program going down, one after another. The program execution (or simply, execution) is

a term for the current instruction being executed. If you print the source code on paper and

put your finger on each line as it is executed, you can think of your finger as the program

execution.

Not all programs execute by simply going straight down, however. If you use your finger

to trace through a program with flow control statements, you’ll likely find yourself jumping

around the source code based on conditions, and you’ll probably skip entire clauses.

FLOW CONTROL STATEMENTS

Now, let’s explore the most important piece of flow control: the statements themselves. The

statements represent the diamonds you saw in the flowchart in Figure 2-1, and they are the

actual decisions your programs will make.

if Statements

The most common type of flow control statement is the if statement. An if statement’s clause

(that is, the block following the if statement) will execute if the statement’s condition is True.

The clause is skipped if the condition is False.

In plain English, an if statement could be read as, “If this condition is true, execute the

code in the clause.” In Python, an if statement consists of the following:

 The if keyword

 A condition (that is, an expression that evaluates to True or False)

 A colon

 Starting on the next line, an indented block of code (called the if clause)

For example, let’s say you have some code that checks to see whether someone’s name is

Alice. (Pretend name was assigned some value earlier.)

if name == 'Alice':

print('Hi, Alice.')

All flow control statements end with a colon and are followed by a new block of code (the

clause). This if statement’s clause is the block with print('Hi, Alice.'). Figure 2-2 shows what

a flowchart of this code would look like.

https://autbor.com/blocks/
https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1533
https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1538

ADUP/18CS55 Module1

Dept. of CSE BRCE

Figure 2-2: The flowchart for an if statement

else Statements

An if clause can optionally be followed by an else statement. The else clause is executed only

when the if statement’s condition is False. In plain English, an else statement could be read

as, “If this condition is true, execute this code. Or else, execute that code.” An else statement

doesn’t have a condition, and in code, an else statement always consists of the following:

 The else keyword

 A colon

 Starting on the next line, an indented block of code (called the else clause)

Returning to the Alice example, let’s look at some code that uses an else statement to offer

a different greeting if the person’s name isn’t Alice.

if name == 'Alice':

print('Hi, Alice.')

else:

print('Hello, stranger.')

Figure 2-3 shows what a flowchart of this code would look like.

https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1539

ADUP/18CS55 Module1

Dept. of CSE BRCE

Figure 2-3: The flowchart for an else statement

elif Statements

While only one of the if or else clauses will execute, you may have a case where you want

one of many possible clauses to execute. The elif statement is an “else if” statement that

always follows an if or another elif statement. It provides another condition that is checked

only if all of the previous conditions were False. In code, an elif statement always consists of

the following:

 The elif keyword

 A condition (that is, an expression that evaluates to True or False)

 A colon

 Starting on the next line, an indented block of code (called the elif clause)

Let’s add an elif to the name checker to see this statement in action.

if name == 'Alice':

print('Hi, Alice.')

elif age < 12:

print('You are not Alice, kiddo.')

This time, you check the person’s age, and the program will tell them something different

if they’re younger than 12. You can see the flowchart for this in Figure 2-4.

https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1540

ADUP/18CS55 Module1

Dept. of CSE BRCE

Figure 2-4: The flowchart for an elif statement

The elif clause executes if age < 12 is True and name == 'Alice' is False. However, if both

of the conditions are False, then both of the clauses are skipped. It is not guaranteed that at

least one of the clauses will be executed. When there is a chain of elif statements, only one or

none of the clauses will be executed. Once one of the statements’ conditions is found to

be True, the rest of the elif clauses are automatically skipped. For example, open a new file

editor window and enter the following code, saving it as vampire.py:

name = 'Carol'

age = 3000

if name == 'Alice':

print('Hi, Alice.')

elif age < 12:

print('You are not Alice, kiddo.')

elif age > 2000:

ADUP/18CS55 Module1

Dept. of CSE BRCE

print('Unlike you, Alice is not an undead, immortal vampire.')

elif age > 100:

print('You are not Alice, grannie.')

You can view the execution of this program at https://autbor.com/vampire/. Here, I’ve

added two more elif statements to make the name checker greet a person with different

answers based on age. Figure 2-5 shows the flowchart for this.

https://autbor.com/vampire/
https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1541

ADUP/18CS55 Module1

Dept. of CSE BRCE Padmavathi H G

ADUP/18CS55 Module1

Dept. of CSE BRCE Padmavathi H G

Figure 2-5: The flowchart for multiple elif statements in the vampire.py program

The order of the elif statements does matter, however. Let’s rearrange them to introduce a

bug. Remember that the rest of the elif clauses are automatically skipped once

a True condition has been found, so if you swap around some of the clauses in vampire.py,

you run into a problem. Change the code to look like the following, and save it

as vampire2.py:

name = 'Carol'

age = 3000

if name == 'Alice':

print('Hi, Alice.')

elif age < 12:

print('You are not Alice, kiddo.')

➊ elif age > 100:

print('You are not Alice, grannie.')

elif age > 2000:

print('Unlike you, Alice is not an undead, immortal vampire.')

You can view the execution of this program at https://autbor.com/vampire2/. Say

the age variable contains the value 3000 before this code is executed. You might expect the

code to print the string 'Unlike you, Alice is not an undead, immortal vampire.'. However,

because the age > 100 condition is True (after all, 3,000 is greater than 100) ➊, the

string 'You are not Alice, grannie.' is printed, and the rest of the elif statements are

automatically skipped. Remember that at most only one of the clauses will be executed, and

for elif statements, the order matters!

Figure 2-6 shows the flowchart for the previous code. Notice how the diamonds for age >

100 and age > 2000 are swapped.

Optionally, you can have an else statement after the last elif statement. In that case,

it is guaranteed that at least one (and only one) of the clauses will be executed. If the

conditions in every if and elif statement are False, then the else clause is executed. For

example, let’s re-create the Alice program to use if, elif, and else clauses.

name = 'Carol'

age = 3000

if name == 'Alice':

print('Hi, Alice.')

elif age < 12:

print('You are not Alice, kiddo.')

else:

print('You are neither Alice nor a little kid.')

You can view the execution of this program at https://autbor.com/littlekid/. Figure 2-

7 shows the flowchart for this new code, which we’ll save as littleKid.py.

In plain English, this type of flow control structure would be “If the first condition is true,

do this. Else, if the second condition is true, do that. Otherwise, do something else.” When

you use if, elif, and else statements together, remember these rules about how to order them

to avoid bugs like the one in Figure 2-6. First, there is always exactly one if statement.

https://autbor.com/vampire2/
https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1542
https://autbor.com/littlekid/
https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1543
https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1543
https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1542

ADUP/18CS55 Module1

Dept. of CSE BRCE Padmavathi H G

Any elif statements you need should follow the if statement. Second, if you want to be sure

that at least one clause is executed, close the structure with an else statement.

ADUP/18CS55 Module1

Dept. of CSE BRCE Padmavathi H G

ADUP/18CS55 Module1

Dept. of CSE BRCE Padmavathi H G

Figure 2-6: The flowchart for the vampire2.py program. The X path will logically never

happen, because if age were greater than 2000, it would have already been greater than 100.

Figure 2-7: Flowchart for the previous littleKid.py program

while Loop Statements

You can make a block of code execute over and over again using a while statement. The code

in a while clause will be executed as long as the while statement’s condition is True. In code,

a while statement always consists of the following:

 The while keyword

ADUP/18CS55 Module1

Dept. of CSE BRCE Padmavathi H G

 A condition (that is, an expression that evaluates to True or False)

 A colon

 Starting on the next line, an indented block of code (called the while clause)

You can see that a while statement looks similar to an if statement. The difference is in

how they behave. At the end of an if clause, the program execution continues after

the if statement. But at the end of a while clause, the program execution jumps back to the

start of the while statement. The while clause is often called the while loop or just the loop.

Let’s look at an if statement and a while loop that use the same condition and take the

same actions based on that condition. Here is the code with an if statement:

spam = 0

if spam < 5:

print('Hello, world.')

spam = spam + 1

Here is the code with a while statement:

spam = 0
while spam < 5:

print('Hello, world.')

spam = spam + 1

These statements are similar—both if and while check the value of spam, and if it’s less

than 5, they print a message. But when you run these two code snippets, something very

different happens for each one. For the if statement, the output is simply "Hello, world.". But

for the while statement, it’s "Hello, world." repeated five times! Take a look at the flowcharts

for these two pieces of code, Figures 2-8 and 2-9, to see why this happens.

https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1544
https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1545

ADUP/18CS55 Module1

Dept. of CSE BRCE Padmavathi H G

Figure 2-8: The flowchart for the if statement code

ADUP/18CS55 Module1

Dept. of CSE BRCE Padmavathi H G

Figure 2-9: The flowchart for the while statement code

The code with the if statement checks the condition, and it prints Hello, world. only once

if that condition is true. The code with the while loop, on the other hand, will print it five

times. The loop stops after five prints because the integer in spam increases by one at the end

of each loop iteration, which means that the loop will execute five times before spam <

5 is False.

In the while loop, the condition is always checked at the start of each iteration (that is,

each time the loop is executed). If the condition is True, then the clause is executed, and

afterward, the condition is checked again. The first time the condition is found to be False,

the while clause is skipped.

An Annoying while Loop

Here’s a small example program that will keep asking you to type, literally, your name.

Select File ▸ New to open a new file editor window, enter the following code, and save the

file as yourName.py:

➊ name = ''

➋ while name != 'your name':

print('Please type your name.')

ADUP/18CS55 Module1

Dept. of CSE BRCE Padmavathi H G

➌ name = input()

➍ print('Thank you!')

You can view the execution of this program at https://autbor.com/yourname/. First, the

program sets the name variable ➊ to an empty string. This is so that the name != 'your

name' condition will evaluate to True and the program execution will enter the while loop’s

clause ➋.

The code inside this clause asks the user to type their name, which is assigned to

the name variable ➌. Since this is the last line of the block, the execution moves back to the

start of the while loop and reevaluates the condition. If the value in name is not equal to the

string 'your name', then the condition is True, and the execution enters the while clause again.

But once the user types your name, the condition of the while loop will be 'your name' !=

'your name', which evaluates to False. The condition is now False, and instead of the program

execution reentering the while loop’s clause, Python skips past it and continues running the

rest of the program ➍. Figure 2-10 shows a flowchart for the yourName.py program.

Figure 2-10: A flowchart of the yourName.py program

Now, let’s see yourName.py in action. Press F5 to run it, and enter something other

than your name a few times before you give the program what it wants.

https://autbor.com/yourname/
https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1546

ADUP/18CS55 Module1

Dept. of CSE BRCE Padmavathi H G

Please type your name.

Al

Please type your name.

Albert

Please type your name.

%#@#%*(^&!!!

Please type your name.

your name

Thank you!

If you never enter your name, then the while loop’s condition will never be False, and the

program will just keep asking forever. Here, the input() call lets the user enter the right string

to make the program move on. In other programs, the condition might never actually change,

and that can be a problem. Let’s look at how you can break out of a while loop.

break Statements

There is a shortcut to getting the program execution to break out of a while loop’s clause

early. If the execution reaches a break statement, it immediately exits the while loop’s clause.

In code, a break statement simply contains the break keyword.

Pretty simple, right? Here’s a program that does the same thing as the previous program,

but it uses a break statement to escape the loop. Enter the following code, and save the file

as yourName2.py:

➊ while True:

print('Please type your name.')

➋ name = input()

➌ if name == 'your name':

➍ break

➎ print('Thank you!')

You can view the execution of this program at https://autbor.com/yourname2/. The first

line ➊ creates an infinite loop; it is a while loop whose condition is always True. (The

expression True, after all, always evaluates down to the value True.) After the program

execution enters this loop, it will exit the loop only when a break statement is executed. (An

infinite loop that never exits is a common programming bug.)

Just like before, this program asks the user to enter your name ➋. Now, however, while

the execution is still inside the while loop, an if statement checks ➌ whether name is equal

to 'your name'. If this condition is True, the break statement is run ➍, and the execution

moves out of the loop to print('Thank you!') ➎. Otherwise, the if statement’s clause that

contains the break statement is skipped, which puts the execution at the end of the while loop.

At this point, the program execution jumps back to the start of the while statement ➊ to

recheck the condition. Since this condition is merely the True Boolean value, the execution

enters the loop to ask the user to type your name again. See Figure 2-11 for this program’s

flowchart.

Run yourName2.py, and enter the same text you entered for yourName.py. The rewritten

program should respond in the same way as the original.

https://autbor.com/yourname2/
https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1547

ADUP/18CS55 Module1

Dept. of CSE BRCE Padmavathi H G

Figure 2-11: The flowchart for the yourName2.py program with an infinite loop. Note that

the X path will logically never happen, because the loop condition is always True.

continue Statements

Like break statements, continue statements are used inside loops. When the program

execution reaches a continue statement, the program execution immediately jumps back to

the start of the loop and reevaluates the loop’s condition. (This is also what happens when the

execution reaches the end of the loop.)

Let’s use continue to write a program that asks for a name and password. Enter the

following code into a new file editor window and save the program as swordfish.py.

ADUP/18CS55 Module1

Dept. of CSE BRCE Padmavathi H G

while True:
print('Who are you?')

name = input()

➊ if name != 'Joe':

➋ continue

print('Hello, Joe. What is the password? (It is a fish.)')

➌ password = input()

if password == 'swordfish':

➍ break

➎ print('Access granted.')

If the user enters any name besides Joe ➊, the continue statement ➋ causes the program

execution to jump back to the start of the loop. When the program reevaluates the condition,

the execution will always enter the loop, since the condition is simply the value True. Once

the user makes it past that if statement, they are asked for a password ➌. If the password

entered is swordfish, then the break statement ➍ is run, and the execution jumps out of

the while loop to print Access granted ➎. Otherwise, the execution continues to the end of

the while loop, where it then jumps back to the start of the loop. See Figure 2-12 for this

program’s flowchart.

TRAPPED IN AN INFINITE LOOP?

If you ever run a program that has a bug causing it to get stuck in an infinite loop,

press CTRL-C or select Shell ▸ Restart Shell from IDLE’s menu. This will send a

KeyboardInterrupt error to your program and cause it to stop immediately. Try stopping a

program by creating a simple infinite loop in the file editor, and save the program

as infiniteLoop.py.

while

print('Hello, world!')

True:

When you run this program, it will print Hello, world! to the screen forever because

the while statement’s condition is always True. CTRL-C is also handy if you want to simply

terminate your program immediately, even if it’s not stuck in an infinite loop.

https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1548

ADUP/18CS55 Module1

Dept. of CSE BRCE Padmavathi H G

ADUP/18CS55 Module1

Dept. of CSE BRCE

Figure 2-12: A flowchart for swordfish.py. The X path will logically never happen, because

the loop condition is always True.

Run this program and give it some input. Until you claim to be Joe, the program shouldn’t

ask for a password, and once you enter the correct password, it should exit.

Who are you?

I'm fine, thanks. Who are you?

Who are you?

Joe

Hello, Joe. What is the password? (It is a fish.)

Mary

Who are you?

Joe

Hello, Joe. What is the password? (It is a fish.)

swordfish

Access granted.

You can view the execution of this program at https://autbor.com/hellojoe/.

for Loops and the range() Function

The while loop keeps looping while its condition is True (which is the reason for its name),

but what if you want to execute a block of code only a certain number of times? You can do

this with a for loop statement and the range() function.

In code, a for statement looks something like for i in range(5): and includes the following:

 The for keyword

“TRUTHY” AND “FALSEY” VALUES

Conditions will consider some values in other data types equivalent to True and False. When

used in conditions, 0, 0.0, and '' (the empty string) are considered False, while all other values

are considered True. For example, look at the following program:

name

➊ while

print('Enter
name

print('How

numOfGuests

➋ if

➌ print('Be

print('Done')

=

not

your

=

many guests will you

=

''

name:

name:')

input()

have?')

int(input())

numOfGuests:

sure to have enough room for all your guests.')

You can view the execution of this program at https://autbor.com/howmanyguests/. If the

user enters a blank string for name, then the while statement’s condition will be True ➊, and

the program continues to ask for a name. If the value for numOfGuests is not 0 ➋, then the

condition is considered to be True, and the program will print a reminder for the user ➌.

You could have entered not name != '' instead of not name, and numOfGuests != 0 instead

of numOfGuests, but using the truthy and falsey values can make your code easier to read.

https://autbor.com/hellojoe/
https://autbor.com/howmanyguests/

ADUP/18CS55 Module1

Dept. of CSE BRCE

 A variable name

 The in keyword

 A call to the range() method with up to three integers passed to it

 A colon

 Starting on the next line, an indented block of code (called the for clause)

Let’s create a new program called fiveTimes.py to help you see a for loop in action.

print('My name is')

for i in range(5):

print('Jimmy Five Times (' + str(i) + ')')

You can view the execution of this program at https://autbor.com/fivetimesfor/. The code

in the for loop’s clause is run five times. The first time it is run, the variable i is set to 0.

The print() call in the clause will print Jimmy Five Times (0). After Python finishes an

iteration through all the code inside the for loop’s clause, the execution goes back to the top

of the loop, and the for statement increments i by one. This is why range(5) results in five

iterations through the clause, with i being set to 0, then 1, then 2, then 3, and then 4. The

variable i will go up to, but will not include, the integer passed to range(). Figure 2-13 shows

a flowchart for the fiveTimes.py program.

When you run this program, it should print Jimmy Five Times followed by the value

of i five times before leaving the for loop.

My name is
Jimmy Five Times (0)

Jimmy Five Times (1)

Jimmy Five Times (2)

Jimmy Five Times (3)

Jimmy Five Times (4)

NOTE

You can use break and continue statements inside for loops as well.

The continue statement will continue to the next value of the for loop’s counter, as if the

program execution had reached the end of the loop and returned to the start. In fact, you

can use continue and break statements only inside while and for loops. If you try to use

these statements elsewhere, Python will give you an error.

https://autbor.com/fivetimesfor/
https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1549

ADUP/18CS55 Module1

Dept. of CSE BRCE

Figure 2-13: The flowchart for fiveTimes.py

As another for loop example, consider this story about the mathematician Carl Friedrich

Gauss. When Gauss was a boy, a teacher wanted to give the class some busywork. The

teacher told them to add up all the numbers from 0 to 100. Young Gauss came up with a

clever trick to figure out the answer in a few seconds, but you can write a Python program

with a for loop to do this calculation for you.

➊ total = 0

➋ for num in range(101):

➌ total = total + num

➍ print(total)

The result should be 5,050. When the program first starts, the total variable is set to 0 ➊.

The for loop ➋ then executes total = total + num ➌ 100 times. By the time the loop has

finished all of its 100 iterations, every integer from 0 to 100 will have been added to total. At

this point, total is printed to the screen ➍. Even on the slowest computers, this program takes

less than a second to complete.

(Young Gauss figured out a way to solve the problem in seconds. There are 50 pairs of

numbers that add up to 101: 1 + 100, 2 + 99, 3 + 98, and so on, until 50 + 51. Since 50 × 101

is 5,050, the sum of all the numbers from 0 to 100 is 5,050. Clever kid!)

ADUP/18CS55 Module1

Dept. of CSE BRCE

An Equivalent while Loop

You can actually use a while loop to do the same thing as a for loop; for loops are just more

concise. Let’s rewrite fiveTimes.py to use a while loop equivalent of a for loop.

print('My name is')

i = 0

while i < 5:

print('Jimmy Five Times (' + str(i) + ')')

i = i + 1

You can view the execution of this program at https://autbor.com/fivetimeswhile/. If you

run this program, the output should look the same as the fiveTimes.py program, which uses

a for loop.

The Starting, Stopping, and Stepping Arguments to range()

Some functions can be called with multiple arguments separated by a comma, and range() is

one of them. This lets you change the integer passed to range() to follow any sequence of

integers, including starting at a number other than zero.

for i in range(12, 16):

print(i)

The first argument will be where the for loop’s variable starts, and the second argument

will be up to, but not including, the number to stop at.

12

13

14

15

The range() function can also be called with three arguments. The first two arguments will

be the start and stop values, and the third will be the step argument. The step is the amount

that the variable is increased by after each iteration.

for i in range(0, 10, 2):

print(i)

So calling range(0, 10, 2) will count from zero to eight by intervals of two.

0

2

4

6

8

https://autbor.com/fivetimeswhile/

ADUP/18CS55 Module1

Dept. of CSE BRCE

The range() function is flexible in the sequence of numbers it produces

for for loops. For example (I never apologize for my puns), you can even use a negative

number for the step argument to make the for loop count down instead of up.

for i in range(5, -1, -1):

print(i)

This for loop would have the following output:

5

4

3

2

1

0

Running a for loop to print i with range(5, -1, -1) should print from five down to zero.

IMPORTING MODULES

All Python programs can call a basic set of functions called built-in functions, including

the print(), input(), and len() functions you’ve seen before. Python also comes with a set of

modules called the standard library. Each module is a Python program that contains a related

group of functions that can be embedded in your programs. For example, the math module

has mathematics-related functions, the random module has random number-related functions,

and so on.

Before you can use the functions in a module, you must import the module with

an import statement. In code, an import statement consists of the following:

 The import keyword

 The name of the module

 Optionally, more module names, as long as they are separated by commas

Once you import a module, you can use all the cool functions of that module. Let’s give it

a try with the random module, which will give us access to the random.randint() function.

Enter this code into the file editor, and save it as printRandom.py:

import random

for i in range(5):

print(random.randint(1, 10))

DON’T OVERWRITE MODULE NAMES

When you save your Python scripts, take care not to give them a name that is used by one of

Python’s modules, such as random.py, sys.py, os.py, or math.py. If you accidentally name one

of your programs, say, random.py, and use an import random statement in another program,

your program would import your random.py file instead of Python’s random module. This

can lead to errors such as AttributeError: module 'random' has no attribute 'randint', since

your random.py doesn’t have the functions that the real random module has. Don’t use the

names of any built-in Python functions either, such as print() or input().

ADUP/18CS55 Module1

Dept. of CSE BRCE

When you run this program, the output will look something like this:

4

1

8

4

1

You can view the execution of this program at https://autbor.com/printrandom/.

The random.randint() function call evaluates to a random integer value between the two

integers that you pass it. Since randint() is in the random module, you must first

type random. in front of the function name to tell Python to look for this function inside

the random module.

Here’s an example of an import statement that imports four different modules:

import random, sys, os, math

Now we can use any of the functions in these four modules. We’ll learn more about them

later in the book.

from import Statements

An alternative form of the import statement is composed of the from keyword, followed by

the module name, the import keyword, and a star; for example, from random import *.

With this form of import statement, calls to functions in random will not need

the random. prefix. However, using the full name makes for more readable code, so it is

better to use the import random form of the statement.

ENDING A PROGRAM EARLY WITH THE SYS.EXIT() FUNCTION

The last flow control concept to cover is how to terminate the program. Programs always

terminate if the program execution reaches the bottom of the instructions. However, you can

cause the program to terminate, or exit, before the last instruction by calling

the sys.exit() function. Since this function is in the sys module, you have to import sys before

your program can use it.

Open a file editor window and enter the following code, saving it as exitExample.py:

import sys

while True:
print('Type exit to exit.')

response = input()

if response == 'exit':

sys.exit()

print('You typed ' + response + '.')

Problems like these are uncommon, but can be tricky to solve. As you gain more

programming experience, you’ll become more aware of the standard names used by Python’s

modules and functions, and will run into these problems less frequently.

https://autbor.com/printrandom/

ADUP/18CS55 Module1

Dept. of CSE BRCE

Run this program in IDLE. This program has an infinite loop with no break statement

inside. The only way this program will end is if the execution reaches the sys.exit() call.

When response is equal to exit, the line containing the sys.exit() call is executed. Since

the response variable is set by the input() function, the user must enter exit in order to stop

the program.

A SHORT PROGRAM: GUESS THE NUMBER

The examples I’ve shown you so far are useful for introducing basic concepts, but now let’s

see how everything you’ve learned comes together in a more complete program. In this

section, I’ll show you a simple “guess the number” game. When you run this program, the

output will look something like this:

I am thinking of a number between 1 and 20.

Take a guess.

10

Your guess is too low.

Take a guess.

15

Your guess is too low.

Take a guess.

17

Your guess is too high.

Take a guess.

16

Good job! You guessed my number in 4 guesses!

Enter the following source code into the file editor, and save the file

as guessTheNumber.py:

This is a guess the number game.

import random

secretNumber = random.randint(1, 20)

print('I am thinking of a number between 1 and 20.')

Ask the player to guess 6 times.

for guessesTaken in range(1, 7):

print('Take a guess.')

guess = int(input())

if guess < secretNumber:

print('Your guess is too low.')

elif guess > secretNumber:

print('Your guess is too high.')

else:

break # This condition is the correct guess!

if guess == secretNumber:

print('Good job! You guessed my number in ' + str(guessesTaken) + '

ADUP/18CS55 Module1

Dept. of CSE BRCE

guesses!')

else:

print('Nope. The number I was thinking of was ' + str(secretNumber))

You can view the execution of this program at https://autbor.com/guessthenumber/. Let’s

look at this code line by line, starting at the top.

This is a guess the number game.

import random

secretNumber = random.randint(1, 20)

First, a comment at the top of the code explains what the program does. Then, the program

imports the random module so that it can use the random.randint() function to generate a

number for the user to guess. The return value, a random integer between 1 and 20, is stored

in the variable secretNumber.

print('I am thinking of a number between 1 and 20.')

Ask the player to guess 6 times.

for guessesTaken in range(1, 7):

print('Take a guess.')

guess = int(input())

The program tells the player that it has come up with a secret number and will give the

player six chances to guess it. The code that lets the player enter a guess and checks that

guess is in a for loop that will loop at most six times. The first thing that happens in the loop

is that the player types in a guess. Since input() returns a string, its return value is passed

straight into int(), which translates the string into an integer value. This gets stored in a

variable named guess.

if guess < secretNumber:

print('Your guess is too low.')

elif guess > secretNumber:

print('Your guess is too high.')

These few lines of code check to see whether the guess is less than or greater than the

secret number. In either case, a hint is printed to the screen.

else:

break # This condition is the correct guess!

If the guess is neither higher nor lower than the secret number, then it must be equal to the

secret number—in which case, you want the program execution to break out of the for loop.

if guess == secretNumber:

print('Good job! You guessed my number in ' + str(guessesTaken) + ' guesses!')

https://autbor.com/guessthenumber/

ADUP/18CS55 Module1

Dept. of CSE BRCE

else:

print('Nope. The number I was thinking of was ' + str(secretNumber))

After the for loop, the previous if...else statement checks whether the player has correctly

guessed the number and then prints an appropriate message to the screen. In both cases, the

program displays a variable that contains an integer value (guessesTaken and secretNumber).

Since it must concatenate these integer values to strings, it passes these variables to

the str() function, which returns the string value form of these integers. Now these strings can

be concatenated with the + operators before finally being passed to the print() function call.

A SHORT PROGRAM: ROCK, PAPER, SCISSORS

Let’s use the programming concepts we’ve learned so far to create a simple rock, paper,

scissors game. The output will look like this:

ROCK, PAPER, SCISSORS

0 Wins, 0 Losses, 0 Ties

Enter your move: (r)ock (p)aper (s)cissors or (q)uit

p

PAPER versus...

PAPER

It is a tie!

0 Wins, 1 Losses, 1 Ties

Enter your move: (r)ock (p)aper (s)cissors or (q)uit

s

SCISSORS versus...

PAPER

You win!

1 Wins, 1 Losses, 1 Ties

Enter your move: (r)ock (p)aper (s)cissors or (q)uit

q

Type the following source code into the file editor, and save the file as rpsGame.py:

import random, sys

print('ROCK, PAPER, SCISSORS')

These variables keep track of the number of wins, losses, and ties.
wins = 0

losses = 0
ties = 0

while True: # The main game loop.

print('%s Wins, %s Losses, %s Ties' % (wins, losses, ties))

while True: # The player input loop.

print('Enter your move: (r)ock (p)aper (s)cissors or (q)uit')

playerMove = input()

if playerMove == 'q':

ADUP/18CS55 Module1

Dept. of CSE BRCE

sys.exit() # Quit the program.

print('PAPER')

Let’s look at this code line by line, starting at the top.

if playerMove == 'r' or playerM ove == 'p' or playerM ove == 's':
break # Break out of the player input loop.

print('Type one of r, p, s, or q.')

Display what the

if playerMove ==

print('ROCK

elif playerMove ==

print('PAPER

elif playerMove ==

print('SCISSORS

player

chose:

'r':

versus...')

'p':

versus...')

's':
versus...')

Display what the computer

chose:

randomNumber = random.randint(1, 3)

if randomNumber == 1:

computerMove = 'r'

print('ROCK')

elif randomNumber

computerMove =

==

2:

'p'

elif randomNumber
computerMove =

== 3:
's'

print('SCISSORS')

Display and

if playerMove

print('It is

record

==

the

a

win/loss/tie:

computerMove:

tie!')

ties =

elif playerMove ==

print('You

wins =

elif playerMove ==

print('You

wins =

elif playerMove ==

print('You
wins =

'r'

'p'

's'

ties

and

wins

and

wins

and

wins

+

computerMove

+

computerMove

+

computerMove

+

1

== 's':

win!')

1

== 'r':

win!')

1

== 'p':

win!')
1

elif playerMove

print('You
losses =

== 'r' and

losses

computerMove

+

== 'p':

lose!')
1

elif playerMove

print('You

losses =

== 'p' and

losses

computerMove

+

== 's':
lose!')

1

elif playerMove
print('You

== 's' and computerMove == 'r':
lose!')

losses = losses + 1

ADUP/18CS55 Module1

Dept. of CSE BRCE

import random, sys

print('ROCK, PAPER, SCISSORS')

These variables keep track of the number of wins, losses, and ties.

wins = 0

losses = 0

ties = 0

First, we import the random and sys module so that our program can call

the random.randint() and sys.exit() functions. We also set up three variables to keep track of

how many wins, losses, and ties the player has had.

while True: # The main game loop.
print('%s Wins, %s Losses, %s Ties' % (wins, losses, ties))

while True: # The player input loop.

print('Enter your move: (r)ock (p)aper (s)cissors or (q)uit')

playerMove = input()

if playerMove == 'q':

sys.exit() # Quit the program.

if playerMove == 'r' or playerMove == 'p' or playerMove == 's':

break # Break out of the player input loop.

print('Type one of r, p, s, or q.')

This program uses a while loop inside of another while loop. The first loop is the main

game loop, and a single game of rock, paper, scissors is played on each iteration through this

loop. The second loop asks for input from the player, and keeps looping until the player has

entered an r, p, s, or q for their move. The r, p, and s correspond to rock, paper, and scissors,

respectively, while the q means the player intends to quit. In that case, sys.exit() is called and

the program exits. If the player has entered r, p, or s, the execution breaks out of the loop.

Otherwise, the program reminds the player to enter r, p, s, or q and goes back to the start of

the loop.

Display what the player chose:

if playerMove == 'r':

print('ROCK versus...')

elif playerMove == 'p':

print('PAPER versus...')

elif playerMove == 's':

print('SCISSORS versus...')

The player’s move is displayed on the screen.

Display what the computer chose:

randomNumber = random.randint(1, 3)

if randomNumber == 1:

computerMove = 'r'

ADUP/18CS55 Module1

Dept. of CSE BRCE

print('ROCK')

elif randomNumber == 2:

computerMove = 'p'

print('PAPER')

elif randomNumber == 3:

computerMove = 's'

print('SCISSORS')

Next, the computer’s move is randomly selected. Since random.randint() can only return a

random number, the 1, 2, or 3 integer value it returns is stored in a variable

named randomNumber. The program stores a 'r', 'p', or 's' string in computerMove based on

the integer in randomNumber, as well as displays the computer’s move.

Display and record the win/loss/tie:

if playerMove == computerMove:

print('It is a tie!')

ties = ties + 1

elif playerMove == 'r' and computerMove == 's':

print('You win!')

wins = wins + 1

elif playerMove == 'p' and computerMove == 'r':

print('You win!')

wins = wins + 1

elif playerMove == 's' and computerMove == 'p':

print('You win!')

wins = wins + 1

elif playerMove == 'r' and computerMove == 'p':

print('You lose!')

losses = losses + 1

elif playerMove == 'p' and computerMove == 's':

print('You lose!')

losses = losses + 1

elif playerMove == 's' and computerMove == 'r':

print('You lose!')

losses = losses + 1

Finally, the program compares the strings in playerMove and computerMove, and displays

the results on the screen. It also increments the wins, losses, or ties variable appropriately.

Once the execution reaches the end, it jumps back to the start of the main program loop to

begin another game.

SUMMARY

By using expressions that evaluate to True or False (also called conditions), you can write

programs that make decisions on what code to execute and what code to skip. You can also

execute code over and over again in a loop while a certain condition evaluates to True.

The break and continue statements are useful if you need to exit a loop or jump back to the

loop’s start.

ADUP/18CS55 Module1

Dept. of CSE BRCE

These flow control statements will let you write more intelligent programs. You can also

use another type of flow control by writing your own functions, which is the topic of the next

chapter.

PRACTICE QUESTIONS

1. What are the two values of the Boolean data type? How do you write them?

2. What are the three Boolean operators?

3. Write out the truth tables of each Boolean operator (that is, every possible combination

of Boolean values for the operator and what they evaluate to).

4. What do the following expressions evaluate to?

(5 > 4) and (3 == 5)

not (5 > 4)
(5 > 4) or (3 == 5)

not ((5 > 4) or (3 == 5))

(True and True) and (True == False)

(not False) or (not True)

5. What are the six comparison operators?

6. What is the difference between the equal to operator and the assignment operator?

7. Explain what a condition is and where you would use one.

8. Identify the three blocks in this code:

spam = 0
if spam == 10:

print('eggs')

if spam > 5:

print('bacon')

else:

print('ham')

print('spam')

print('spam')

9. Write code that prints Hello if 1 is stored in spam, prints Howdy if 2 is stored in spam,

and prints Greetings! if anything else is stored in spam.

10. What keys can you press if your program is stuck in an infinite loop?

11. What is the difference between break and continue?

12. What is the difference between range(10), range(0, 10), and range(0, 10, 1) in a for loop?

13. Write a short program that prints the numbers 1 to 10 using a for loop. Then write an

equivalent program that prints the numbers 1 to 10 using a while loop.

14. If you had a function named bacon() inside a module named spam, how would you call it

after importing spam?

ADUP/18CS55 Module1

Dept. of CSE BRCE

Extra credit: Look up the round() and abs() functions on the internet, and find out what

they do. Experiment with them in the interactive shell.

FUNCTIONS

You’re already familiar with the print(), input(), and len() functions from the previous

chapters. Python provides several built-in functions like these, but you can also write your

own functions. A function is like a miniprogram within a program.

To better understand how functions work, let’s create one. Enter this program into the file

editor and save it as helloFunc.py:

➊ def hello():

➋ print('Howdy!')

print('Howdy!!!')

print('Hello there.')

➌ hello()

hello()

hello()

You can view the execution of this program at https://autbor.com/hellofunc/. The first line

is a def statement ➊, which defines a function named hello(). The code in the block that

follows the def statement ➋ is the body of the function. This code is executed when the

function is called, not when the function is first defined.

The hello() lines after the function ➌ are function calls. In code, a function call is just the

function’s name followed by parentheses, possibly with some number of arguments in

between the parentheses. When the program execution reaches these calls, it will jump to the

top line in the function and begin executing the code there. When it reaches the end of the

function, the execution returns to the line that called the function and continues moving

through the code as before.

Since this program calls hello() three times, the code in the hello() function is executed

three times. When you run this program, the output looks like this:

Howdy!

Howdy!!!

Hello there.

Howdy!

Howdy!!!

Hello there.

Howdy!

Howdy!!!

Hello there.

https://autbor.com/hellofunc/

ADUP/18CS55 Module1

Dept. of CSE BRCE

A major purpose of functions is to group code that gets executed multiple times. Without

a function defined, you would have to copy and paste this code each time, and the program

would look like this:

print('Howdy!')

print('Howdy!!!')

print('Hello there.')

print('Howdy!')

print('Howdy!!!')

print('Hello there.')

print('Howdy!')

print('Howdy!!!')

print('Hello there.')

In general, you always want to avoid duplicating code because if you ever decide to

update the code—if, for example, you find a bug you need to fix—you’ll have to remember

to change the code everywhere you copied it.

As you get more programming experience, you’ll often find yourself deduplicating code,

which means getting rid of duplicated or copy-and-pasted code. Deduplication makes your

programs shorter, easier to read, and easier to update.

DEF STATEMENTS WITH PARAMETERS

When you call the print() or len() function, you pass them values, called arguments, by typing

them between the parentheses. You can also define your own functions that accept

arguments. Type this example into the file editor and save it as helloFunc2.py:

➊ def hello(name):

➋ print('Hello, ' + name)

➌ hello('Alice')

hello('Bob')

When you run this program, the output looks like this:

Hello, Alice

Hello, Bob

You can view the execution of this program at https://autbor.com/hellofunc2/. The

definition of the hello() function in this program has a parameter called name ➊

. Parameters are variables that contain arguments. When a function is called with arguments,

the arguments are stored in the parameters. The first time the hello() function is called, it is

passed the argument 'Alice' ➌. The program execution enters the function, and the

parameter name is automatically set to 'Alice', which is what gets printed by

the print() statement ➋.

One special thing to note about parameters is that the value stored in a parameter is

forgotten when the function returns. For example, if you

added print(name) after hello('Bob') in the previous program, the program would give you

https://autbor.com/hellofunc2/

ADUP/18CS55 Module1

Dept. of CSE BRCE

To define a function is to create it, just like an assignment statement like spam =

42 creates the spam variable. The def statement defines the sayHello() function ➊.

The sayHello('Al') line ➋ calls the now-created function, sending the execution to the top of

the function’s code. This function call is also known as passing the string value 'Al' to the

function. A value being passed to a function in a function call is an argument. The

argument 'Al' is assigned to a local variable named name. Variables that have arguments

assigned to them are parameters.

It’s easy to mix up these terms, but keeping them straight will ensure that you know

precisely what the text in this chapter means.

RETURN VALUES AND RETURN STATEMENTS

When you call the len() function and pass it an argument such as 'Hello', the function call

evaluates to the integer value 5, which is the length of the string you passed it. In general, the

value that a function call evaluates to is called the return value of the function.

When creating a function using the def statement, you can specify what the return value

should be with a return statement. A return statement consists of the following:

 The return keyword

 The value or expression that the function should return

When an expression is used with a return statement, the return value is what this

expression evaluates to. For example, the following program defines a function that returns a

different string depending on what number it is passed as an argument. Enter this code into

the file editor and save it as magic8Ball.py:

a NameError because there is no variable named name. This variable is destroyed after the

function call hello('Bob') returns, so print(name) would refer to a name variable that does not

exist.

This is similar to how a program’s variables are forgotten when the program terminates.

I’ll talk more about why that happens later in the chapter, when I discuss what a function’s

local scope is.

Define, Call, Pass, Argument, Parameter

The terms define, call, pass, argument, and parameter can be confusing. Let’s look at a code

example to review these terms:

➊ def sayHello(name):

print('Hello, ' + name)

➋ sayHello('Al')

➊ import random

➋ def getAnswer(answerNumber):

➌ if answerNumber == 1:

return 'It is certain'

elif answerNumber == 2:

return 'It is decidedly so'

elif answerNumber == 3:

ADUP/18CS55 Module1

Dept. of CSE BRCE

return 'Yes'
elif answerNumber == 4:

return 'Reply hazy try again'

elif answerNumber == 5:

return 'Ask again later'

elif answerNumber == 6:

return 'Concentrate and ask again'

elif answerNumber == 7:

return 'My reply is no'

elif answerNumber == 8:

return 'Outlook not so good'

elif answerNumber == 9:

return 'Very doubtful'

➍ r = random.randint(1, 9)

➎ fortune = getAnswer(r)

➏ print(fortune)

You can view the execution of this program at https://autbor.com/magic8ball/. When this

program starts, Python first imports the random module ➊. Then the getAnswer() function is

defined ➋. Because the function is being defined (and not called), the execution skips over

the code in it. Next, the random.randint() function is called with two arguments: 1 and 9 ➍. It

evaluates to a random integer between 1 and 9 (including 1 and 9 themselves), and this value

is stored in a variable named r.

The getAnswer() function is called with r as the argument ➎. The program execution

moves to the top of the getAnswer() function ➌, and the value r is stored in a parameter

named answerNumber. Then, depending on the value in answerNumber, the function returns

one of many possible string values. The program execution returns to the line at the bottom of

the program that originally called getAnswer() ➎. The returned string is assigned to a

variable named fortune, which then gets passed to a print() call ➏ and is printed to the

screen.

Note that since you can pass return values as an argument to another function call, you

could shorten these three lines:

r = random.randint(1, 9)

fortune = getAnswer(r)

print(fortune)

to this single equivalent line:

print(getAnswer(random.randint(1, 9)))

Remember, expressions are composed of values and operators. A function call can be used

in an expression because the call evaluates to its return value.

https://autbor.com/magic8ball/

ADUP/18CS55 Module1

Dept. of CSE BRCE

THE NONE VALUE

In Python, there is a value called None, which represents the absence of a value.

The None value is the only value of the NoneType data type. (Other programming languages

might call this value null, nil, or undefined.) Just like the

Boolean True and False values, None must be typed with a capital N.

This value-without-a-value can be helpful when you need to store something that won’t be

confused for a real value in a variable. One place where None is used is as the return value

of print(). The print() function displays text on the screen, but it doesn’t need to return

anything in the same way len() or input() does. But since all function calls need to evaluate to

a return value, print() returns None. To see this in action, enter the following into the

interactive shell:

>>> spam = print('Hello!')

Hello!
>>> None == spam

True

Behind the scenes, Python adds return None to the end of any function definition with

no return statement. This is similar to how a while or for loop implicitly ends with

a continue statement. Also, if you use a return statement without a value (that is, just

the return keyword by itself), then None is returned.

KEYWORD ARGUMENTS AND THE PRINT() FUNCTION

Most arguments are identified by their position in the function call. For

example, random.randint(1, 10) is different from random.randint(10, 1). The function

call random.randint(1, 10) will return a random integer between 1 and 10 because the first

argument is the low end of the range and the second argument is the high end

(while random.randint(10, 1) causes an error).

However, rather than through their position, keyword arguments are identified by the

keyword put before them in the function call. Keyword arguments are often used for optional

parameters. For example, the print() function has the optional parameters end and sep to

specify what should be printed at the end of its arguments and between its arguments

(separating them), respectively.

If you ran a program with the following code:

print('Hello')

print('World')

the output would look like this:

Hello

World

The two outputted strings appear on separate lines because the print() function

automatically adds a newline character to the end of the string it is passed. However, you can

set the end keyword argument to change the newline character to a different string. For

example, if the code were this:

ADUP/18CS55 Module1

Dept. of CSE BRCE

You can add keyword arguments to the functions you write as well, but first you’ll have to

learn about the list and dictionary data types in the next two chapters. For now, just know that

some functions have optional keyword arguments that can be specified when the function is

called.

THE CALL STACK

Imagine that you have a meandering conversation with someone. You talk about your friend

Alice, which then reminds you of a story about your coworker Bob, but first you have to

explain something about your cousin Carol. You finish you story about Carol and go back to

talking about Bob, and when you finish your story about Bob, you go back to talking about

Alice. But then you are reminded about your brother David, so you tell a story about him, and

then get back to finishing your original story about Alice. Your conversation followed

a stack-like structure, like in Figure 3-1. The conversation is stack-like because the current

topic is always at the top of the stack.

Figure 3-1: Your meandering conversation stack

Similar to our meandering conversation, calling a function doesn’t send the execution on a

one-way trip to the top of a function. Python will remember which line of code called the

function so that the execution can return there when it encounters a return statement. If that

print('Hello', end='')

print('World')

the output would look like this:

HelloWorld

The output is printed on a single line because there is no longer a newline printed

after 'Hello'. Instead, the blank string is printed. This is useful if you need to disable the

newline that gets added to the end of every print() function call.

Similarly, when you pass multiple string values to print(), the function will automatically

separate them with a single space. Enter the following into the interactive shell:

>>> print('cats', 'dogs', 'mice')

cats dogs mice

But you could replace the default separating string by passing the sep keyword argument a

different string. Enter the following into the interactive shell:

>>> print('cats', 'dogs', 'mice', sep=',')

cats,dogs,mice

https://automatetheboringstuff.com/2e/chapter3/#calibre_link-1213

ADUP/18CS55 Module1

Dept. of CSE BRCE

original function called other functions, the execution would return to those function calls

first, before returning from the original function call.

Open a file editor window and enter the following code, saving it as abcdCallStack.py:

def a():

print('a() starts')

➊ b()

➋ d()

print('a() returns')

def b():

print('b() starts')

➌ c()

print('b() returns')

def c():

➍ print('c() starts')

print('c() returns')

def d():

print('d() starts')

print('d() returns')

➎ a()

If you run this program, the output will look like this:

a() starts

b() starts

c() starts

c() returns

b() returns

d() starts

d() returns

a() returns

You can view the execution of this program at https://autbor.com/abcdcallstack/.

When a() is called ➎, it calls b() ➊, which in turn calls c() ➌. The c() function doesn’t call

anything; it just displays c() starts ➍ and c() returns before returning to the line in b() that

called it ➌. Once execution returns to the code in b() that called c(), it returns to the line

in a() that called b() ➊. The execution continues to the next line in the b() function ➋, which

is a call to d(). Like the c() function, the d() function also doesn’t call anything. It just

displays d() starts and d() returns before returning to the line in b() that called it.

Since b() contains no other code, the execution returns to the line in a() that called b() ➋. The

last line in a() displays a() returns before returning to the original a() call at the end of the

program ➎.

https://autbor.com/abcdcallstack/

ADUP/18CS55 Module1

Dept. of CSE BRCE

The call stack is how Python remembers where to return the execution after each function

call. The call stack isn’t stored in a variable in your program; rather, Python handles it behind

the scenes. When your program calls a function, Python creates a frame object on the top of

the call stack. Frame objects store the line number of the original function call so that Python

can remember where to return. If another function call is made, Python puts another frame

object on the call stack above the other one.

When a function call returns, Python removes a frame object from the top of the stack and

moves the execution to the line number stored in it. Note that frame objects are always added

and removed from the top of the stack and not from any other place. Figure 3-2 illustrates the

state of the call stack in abcdCallStack.py as each function is called and returns.

Figure 3-2: The frame objects of the call stack as abcdCallStack.py calls and returns from

functions

The top of the call stack is which function the execution is currently in. When the call

stack is empty, the execution is on a line outside of all functions.

The call stack is a technical detail that you don’t strictly need to know about to write

programs. It’s enough to understand that function calls return to the line number they were

called from. However, understanding call stacks makes it easier to understand local and

global scopes, described in the next section.

LOCAL AND GLOBAL SCOPE

Parameters and variables that are assigned in a called function are said to exist in that

function’s local scope. Variables that are assigned outside all functions are said to exist in

the global scope. A variable that exists in a local scope is called a local variable, while a

variable that exists in the global scope is called a global variable. A variable must be one or

the other; it cannot be both local and global.

Think of a scope as a container for variables. When a scope is destroyed, all the values

stored in the scope’s variables are forgotten. There is only one global scope, and it is created

when your program begins. When your program terminates, the global scope is destroyed,

and all its variables are forgotten. Otherwise, the next time you ran a program, the variables

would remember their values from the last time you ran it.

A local scope is created whenever a function is called. Any variables assigned in the

function exist within the function’s local scope. When the function returns, the local scope is

destroyed, and these variables are forgotten. The next time you call the function, the local

variables will not remember the values stored in them from the last time the function was

called. Local variables are also stored in frame objects on the call stack.

Scopes matter for several reasons:

 Code in the global scope, outside of all functions, cannot use any local variables.

 However, code in a local scope can access global variables.

 Code in a function’s local scope cannot use variables in any other local scope.

 You can use the same name for different variables if they are in different scopes. That is,

there can be a local variable named spam and a global variable also named spam.

https://automatetheboringstuff.com/2e/chapter3/#calibre_link-1214

ADUP/18CS55 Module1

Dept. of CSE BRCE

 If you run this program, the output will look like this:

The reason Python has different scopes instead of just making everything a global variable

is so that when variables are modified by the code in a particular call to a function, the

function interacts with the rest of the program only through its parameters and the return

value. This narrows down the number of lines of code that may be causing a bug. If your

program contained nothing but global variables and had a bug because of a variable being set

to a bad value, then it would be hard to track down where this bad value was set. It could

have been set from anywhere in the program, and your program could be hundreds or

thousands of lines long! But if the bug is caused by a local variable with a bad value, you

know that only the code in that one function could have set it incorrectly.

While using global variables in small programs is fine, it is a bad habit to rely on global

variables as your programs get larger and larger.

Local Variables Cannot Be Used in the Global Scope

Consider this program, which will cause an error when you run it:

def spam():

➊ eggs = 31337

spam()

print(eggs)

Traceback (most recent call last):
File "C:/test1.py", line 4, in <module>

print(eggs)

NameError: name 'eggs' is not defined

The error happens because the eggs variable exists only in the local scope created

when spam() is called ➊. Once the program execution returns from spam, that local scope is

destroyed, and there is no longer a variable named eggs. So when your program tries to

run print(eggs), Python gives you an error saying that eggs is not defined. This makes sense if

you think about it; when the program execution is in the global scope, no local scopes exist,

so there can’t be any local variables. This is why only global variables can be used in the

global scope.

Local Scopes Cannot Use Variables in Other Local Scopes

A new local scope is created whenever a function is called, including when a function is

called from another function. Consider this program:

def spam():

➊ eggs = 99

➋ bacon()

➌ print(eggs)

def bacon():

ham = 101

➍ eggs = 0

ADUP/18CS55 Module1

Dept. of CSE BRCE

➎ spam()

You can view the execution of this program at https://autbor.com/otherlocalscopes/.

When the program starts, the spam() function is called ➎, and a local scope is created. The

local variable eggs ➊ is set to 99. Then the bacon() function is called ➋, and a second local

scope is created. Multiple local scopes can exist at the same time. In this new local scope, the

local variable ham is set to 101, and a local variable eggs—which is different from the one

in spam()’s local scope—is also created ➍ and set to 0.

When bacon() returns, the local scope for that call is destroyed, including

its eggs variable. The program execution continues in the spam() function to print the value

of eggs ➌. Since the local scope for the call to spam() still exists, the only eggs variable is

the spam() function’s eggs variable, which was set to 99. This is what the program prints.

The upshot is that local variables in one function are completely separate from the local

variables in another function.

Global Variables Can Be Read from a Local Scope

Consider the following program:

def spam():

print(eggs)

eggs = 42

spam()

print(eggs)

You can view the execution of this program at https://autbor.com/readglobal/. Since there

is no parameter named eggs or any code that assigns eggs a value in the spam() function,

when eggs is used in spam(), Python considers it a reference to the global variable eggs. This

is why 42 is printed when the previous program is run.

Local and Global Variables with the Same Name

Technically, it’s perfectly acceptable to use the same variable name for a global variable and

local variables in different scopes in Python. But, to simplify your life, avoid doing this. To

see what happens, enter the following code into the file editor and save it

as localGlobalSameName.py:

def spam():

➊ eggs = 'spam local'

print(eggs) # prints 'spam local'

def bacon():

➋ eggs = 'bacon local'

print(eggs) # prints 'bacon local'

spam()

print(eggs) # prints 'bacon local'

➌ eggs = 'global'

https://autbor.com/otherlocalscopes/
https://autbor.com/readglobal/

ADUP/18CS55 Module1

Dept. of CSE BRCE

bacon()

print(eggs) # prints 'global'

When you run this program, it outputs the following:

bacon local

spam local

bacon local

global

You can view the execution of this program at https://autbor.com/localglobalsamename/.

There are actually three different variables in this program, but confusingly they are all

named eggs. The variables are as follows:

➊ A variable named eggs that exists in a local scope when spam() is called.

➋ A variable named eggs that exists in a local scope when bacon() is called.

➌ A variable named eggs that exists in the global scope.

Since these three separate variables all have the same name, it can be confusing to keep

track of which one is being used at any given time. This is why you should avoid using the

same variable name in different scopes.

THE GLOBAL STATEMENT

If you need to modify a global variable from within a function, use the global statement. If

you have a line such as global eggs at the top of a function, it tells Python, “In this

function, eggs refers to the global variable, so don’t create a local variable with this name.”

For example, enter the following code into the file editor and save it as globalStatement.py:

def spam():

➊ global eggs

➋ eggs = 'spam'

eggs = 'global'

spam()

print(eggs)

When you run this program, the final print() call will output this:

spam

 If a variable is being used in the global scope (that is, outside of all functions), then it is

always a global variable.

 If there is a global statement for that variable in a function, it is a global variable.

You can view the execution of this program at https://autbor.com/globalstatement/.

Because eggs is declared global at the top of spam() ➊, when eggs is set to 'spam' ➋, this

assignment is done to the globally scoped eggs. No local eggs variable is created.

There are four rules to tell whether a variable is in a local scope or global scope:

https://autbor.com/localglobalsamename/
https://autbor.com/globalstatement/

ADUP/18CS55 Module1

Dept. of CSE BRCE

To get a better feel for these rules, here’s an example program. Enter the following code

into the file editor and save it as sameNameLocalGlobal.py:

 Otherwise, if the variable is used in an assignment statement in the function, it is a local

variable.

 But if the variable is not used in an assignment statement, it is a global variable.

def spam():

➊ global eggs

eggs = 'spam' # this is the global

def bacon():

➋ eggs = 'bacon' # this is a local

def ham():

➌ print(eggs) # this is the global

eggs = 42 # this is the global

spam()

print(eggs)

In the spam() function, eggs is the global eggs variable because there’s a global statement

for eggs at the beginning of the function ➊. In bacon(), eggs is a local variable because

there’s an assignment statement for it in that function ➋. In ham() ➌, eggs is the global

variable because there is no assignment statement or global statement for it in that function. If

you run sameNameLocalGlobal.py, the output will look like this:

spam

NOTE

at https://autbor.com/sameNameLocalGlobal/. In a function, a variable will either always be

global or always be local. The code in a function can’t use a local variable named eggs and

then use the global eggs variable later in that same function.

program this of execution the view can You

If you ever want to modify the value stored in a global variable from in a function, you

must use a global statement on that variable.

If you try to use a local variable in a function before you assign a value to it, as in the

following program, Python will give you an error. To see this, enter the following into the file

editor and save it as sameNameError.py:

def spam():

print(eggs) # ERROR!

➊ eggs = 'spam local'

➋ eggs = 'global'

spam()

https://autbor.com/sameNameLocalGlobal/

ADUP/18CS55 Module1

Dept. of CSE BRCE

 If you run the previous program, it produces an error message.

You can view the execution of this program at https://autbor.com/sameNameError/. This

error happens because Python sees that there is an assignment statement for eggs in

the spam() function ➊ and, therefore, considers eggs to be local. But because print(eggs) is

executed before eggs is assigned anything, the local variable eggs doesn’t exist. Python

will not fall back to using the global eggs variable ➋.

EXCEPTION HANDLING

Right now, getting an error, or exception, in your Python program means the entire program

will crash. You don’t want this to happen in real-world programs. Instead, you want the

program to detect errors, handle them, and then continue to run.

For example, consider the following program, which has a divide-by-zero error. Open a

file editor window and enter the following code, saving it as zeroDivide.py:

FUNCTIONS AS “BLACK BOXES”

Often, all you need to know about a function are its inputs (the parameters) and output value;

you don’t always have to burden yourself with how the function’s code actually works. When

you think about functions in this high-level way, it’s common to say that you’re treating a

function as a “black box.”

This idea is fundamental to modern programming. Later chapters in this book will show

you several modules with functions that were written by other people. While you can take a

peek at the source code if you’re curious, you don’t need to know how these functions work

in order to use them. And because writing functions without global variables is encouraged,

you usually don’t have to worry about the function’s code interacting with the rest of your

program.

Traceback (most recent call last):

File "C:/sameNameError.py", line 6, in <module>

spam()

File "C:/sameNameError.py", line 2, in spam

print(eggs) # ERROR!

UnboundLocalError: local variable 'eggs' referenced before assignment

def spam(divideBy):

return 42 / divideBy

print(spam(2))

print(spam(12))

print(spam(0))

print(spam(1))

We’ve defined a function called spam, given it a parameter, and then printed the value of

that function with various parameters to see what happens. This is the output you get when

you run the previous code:

https://autbor.com/sameNameError/

ADUP/18CS55 Module1

Dept. of CSE BRCE

21.0

3.5

Traceback (most recent call last):

File "C:/zeroDivide.py", line 6, in <module>

print(spam(0))

File "C:/zeroDivide.py", line 2, in spam

return 42 / divideBy

ZeroDivisionError: division by zero

You can view the execution of this program at https://autbor.com/zerodivide/.

A ZeroDivisionError happens whenever you try to divide a number by zero. From the line

number given in the error message, you know that the return statement in spam() is causing

an error.

Errors can be handled with try and except statements. The code that could potentially have

an error is put in a try clause. The program execution moves to the start of a

following except clause if an error happens.

You can put the previous divide-by-zero code in a try clause and have an except clause

contain code to handle what happens when this error occurs.

def spam(divideBy):

try:

return 42 / divideBy

except ZeroDivisionError:

print('Error: Invalid argument.')

print(spam(2))

print(spam(12))

print(spam(0))

print(spam(1))

When code in a try clause causes an error, the program execution immediately moves to

the code in the except clause. After running that code, the execution continues as normal. The

output of the previous program is as follows:

21.0

3.5

Error: Invalid argument.

None

42.0

You can view the execution of this program at https://autbor.com/tryexceptzerodivide/.

Note that any errors that occur in function calls in a try block will also be caught. Consider

the following program, which instead has the spam() calls in the try block:

def spam(divideBy):

return 42 / divideBy

https://autbor.com/zerodivide/
https://autbor.com/tryexceptzerodivide/

ADUP/18CS55 Module1

Dept. of CSE BRCE

 Type the following source code into the file editor, and save the file as zigzag.py:

try:
print(spam(2))

print(spam(12))

print(spam(0))

print(spam(1))

except ZeroDivisionError:

print('Error: Invalid argument.')

When this program is run, the output looks like this:

21.0

3.5

Error: Invalid argument.

You can view the execution of this program at https://autbor.com/spamintry/. The

reason print(spam(1)) is never executed is because once the execution jumps to the code in

the except clause, it does not return to the try clause. Instead, it just continues moving down

the program as normal.

A SHORT PROGRAM: ZIGZAG

Let’s use the programming concepts you’ve learned so far to create a small animation

program. This program will create a back-and-forth, zigzag pattern until the user stops it by

pressing the Mu editor’s Stop button or by pressing CTRL-C. When you run this program,

the output will look something like this:

import time, sys

indent = 0 # How many spaces to indent.

indentIncreasing = True # Whether the indentation is increasing or not.

try:

while True: # The main program loop.

print(' ' * indent, end='')

print('********')

time.sleep(0.1) # Pause for 1/10 of a second.

https://autbor.com/spamintry/

ADUP/18CS55 Module1

Dept. of CSE BRCE

 Let’s look at this code line by line, starting at the top.

if indentIncreasing:
Increase the number of spaces:

indent = indent + 1

if indent == 20:

Change direction:

indentIncreasing = False

else:

Decrease the number of spaces:

indent = indent - 1

if indent == 0:

Change direction:

indentIncreasing = True

except KeyboardInterrupt:

sys.exit()

import time, sys

indent = 0 # How many spaces to indent.

indentIncreasing = True # Whether the indentation is increasing or not.

First, we’ll import the time and sys modules. Our program uses two variables:

the indent variable keeps track of how many spaces of indentation are before the band of

eight asterisks and indentIncreasing contains a Boolean value to determine if the amount of

indentation is increasing or decreasing.

try:

while True: # The main program loop.

print(' ' * indent, end='')

print('********')

time.sleep(0.1) # Pause for 1/10 of a second.

Next, we place the rest of the program inside a try statement. When the user

presses CTRL-C while a Python program is running, Python raises

the KeyboardInterrupt exception. If there is no try-except statement to catch this exception,

the program crashes with an ugly error message. However, for our program, we want it to

cleanly handle the KeyboardInterrupt exception by calling sys.exit(). (The code for this is in

the except statement at the end of the program.)

The while True: infinite loop will repeat the instructions in our program forever. This

involves using ' ' * indent to print the correct amount of spaces of indentation. We don’t want

to automatically print a newline after these spaces, so we also pass end='' to the

first print() call. A second print() call prints the band of asterisks. The time.sleep() function

hasn’t been covered yet, but suffice it to say that it introduces a one-tenth-second pause in our

program at this point.

if indentIncreasing:

Increase the number of spaces:

ADUP/18CS55 Module1

Dept. of CSE BRCE

indent = indent + 1

if indent == 20:

indentIncreasing = False # Change direction.

Next, we want to adjust the amount of indentation for the next time we print asterisks.

If indentIncreasing is True, then we want to add one to indent. But once indent reaches 20,

we want the indentation to decrease.

else:

Decrease the number of spaces:

indent = indent - 1

if indent == 0:

indentIncreasing = True # Change direction.

Meanwhile, if indentIncreasing was False, we want to subtract one from indent. Once

indent reaches 0, we want the indentation to increase once again. Either way, the program

execution will jump back to the start of the main program loop to print the asterisks again.

except KeyboardInterrupt:

sys.exit()

If the user presses CTRL-C at any point that the program execution is in the try block,

the KeyboardInterrrupt exception is raised and handled by this except statement. The

program execution moves inside the except block, which runs sys.exit() and quits the

program. This way, even though the main program loop is an infinite loop, the user has a way

to shut down the program.

SUMMARY

Functions are the primary way to compartmentalize your code into logical groups. Since the

variables in functions exist in their own local scopes, the code in one function cannot directly

affect the values of variables in other functions. This limits what code could be changing the

values of your variables, which can be helpful when it comes to debugging your code.

Functions are a great tool to help you organize your code. You can think of them as black

boxes: they have inputs in the form of parameters and outputs in the form of return values,

and the code in them doesn’t affect variables in other functions.

In previous chapters, a single error could cause your programs to crash. In this chapter,

you learned about try and except statements, which can run code when an error has been

detected. This can make your programs more resilient to common error cases.

PRACTICE QUESTIONS

1. Why are functions advantageous to have in your programs?

2. When does the code in a function execute: when the function is defined or when the

function is called?

3. What statement creates a function?

4. What is the difference between a function and a function call?

ADUP/18CS55 Module1

Dept. of CSE BRCE

5. How many global scopes are there in a Python program? How many local scopes?

6. What happens to variables in a local scope when the function call returns?

7. What is a return value? Can a return value be part of an expression?

8. If a function does not have a return statement, what is the return value of a call to that

function?

9. How can you force a variable in a function to refer to the global variable?

10. What is the data type of None?

11. What does the import areallyourpetsnamederic statement do?

12. If you had a function named bacon() in a module named spam, how would you call it

after importing spam?

13. How can you prevent a program from crashing when it gets an error?

14. What goes in the try clause? What goes in the except clause?

PRACTICE PROJECTS

For practice, write programs to do the following tasks.

The Collatz Sequence

Write a function named collatz() that has one parameter named number. If number is even,

then collatz() should print number // 2 and return this value. If number is odd,

then collatz() should print and return 3 * number + 1.

Then write a program that lets the user type in an integer and that keeps

calling collatz() on that number until the function returns the value 1. (Amazingly enough,

this sequence actually works for any integer—sooner or later, using this sequence, you’ll

arrive at 1! Even mathematicians aren’t sure why. Your program is exploring what’s called

the Collatz sequence, sometimes called “the simplest impossible math problem.”)

Remember to convert the return value from input() to an integer with the int() function;

otherwise, it will be a string value.

Hint: An integer number is even if number % 2 == 0, and it’s odd if number % 2 == 1.

The output of this program could look something like this:

Enter number:
3

10

5

16

8

4

2

1

Input Validation

Add try and except statements to the previous project to detect whether the user types in a

noninteger string. Normally, the int() function will raise a ValueError error if it is passed a

ADUP/18CS55 Module1

Dept. of CSE BRCE

noninteger string, as in int('puppy'). In the except clause, print a message to the user saying

they must enter an integer.

ADUP/18CS55 Module2

Dept. of CSE

LISTS

One more topic you’ll need to understand before you can begin writing programs in earnest is

the list data type and its cousin, the tuple. Lists and tuples can contain multiple values, which

makes writing programs that handle large amounts of data easier. And since lists themselves

can contain other lists, you can use them to arrange data into hierarchical structures.

In this chapter, I’ll discuss the basics of lists. I’ll also teach you about methods, which are

functions that are tied to values of a certain data type. Then I’ll briefly cover the sequence

data types (lists, tuples, and strings) and show how they compare with each other. In the next

chapter, I’ll introduce you to the dictionary data type.

THE LIST DATA TYPE

A list is a value that contains multiple values in an ordered sequence. The term list

value refers to the list itself (which is a value that can be stored in a variable or passed to a

function like any other value), not the values inside the list value. A list value looks like

this: ['cat', 'bat', 'rat', 'elephant']. Just as string values are typed with quote characters to mark

where the string begins and ends, a list begins with an opening square bracket and ends with a

closing square bracket, []. Values inside the list are also called items. Items are separated with

commas (that is, they are comma-delimited). For example, enter the following into the

interactive shell:

>>> [1, 2, 3]

[1, 2, 3]

>>> ['cat', 'bat', 'rat', 'elephant']

['cat', 'bat', 'rat', 'elephant']

>>> ['hello', 3.1415, True, None, 42]

['hello', 3.1415, True, None, 42]

➊ >>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam

['cat', 'bat', 'rat', 'elephant']

The spam variable ➊ is still assigned only one value: the list value. But the list value

itself contains other values. The value [] is an empty list that contains no values, similar to '',

the empty string.

Getting Individual Values in a List with Indexes

Say you have the list ['cat', 'bat', 'rat', 'elephant'] stored in a variable named spam. The Python

code spam[0] would evaluate to 'cat', and spam[1] would evaluate to 'bat', and so on. The

integer inside the square brackets that follows the list is called an index. The first value in the

list is at index 0, the second value is at index 1, the third value is at index 2, and so on. Figure

4-1 shows a list value assigned to spam, along with what the index expressions would

evaluate to. Note that because the first index is 0, the last index is one less than the size of the

list; a list of four items has 3 as its last index.

https://automatetheboringstuff.com/2e/chapter4/#calibre_link-708
https://automatetheboringstuff.com/2e/chapter4/#calibre_link-708

ADUP/18CS55 Module2

Dept. of CSE

Figure 4-1: A list value stored in the variable spam, showing which value each index refers

to

For example, enter the following expressions into the interactive shell. Start by assigning a

list to the variable spam.

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam[0]

'cat'

>>> spam[1]

'bat'

>>> spam[2]

'rat'

>>> spam[3]

'elephant'

>>> ['cat', 'bat', 'rat', 'elephant'][3]

'elephant'

➊ >>> 'Hello, ' + spam[0]

➋ 'Hello, cat'

>>> 'The ' + spam[1] + ' ate the ' + spam[0] + '.'

'The bat ate the cat.'

Notice that the expression 'Hello, ' + spam[0] ➊ evaluates to 'Hello, ' +

'cat' because spam[0] evaluates to the string 'cat'. This expression in turn evaluates to the

string value 'Hello, cat' ➋.

Python will give you an IndexError error message if you use an index that exceeds the

number of values in your list value.

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam[10000]

Traceback (most recent call last):

File "<pyshell#9>", line 1, in <module>

spam[10000]

IndexError: list index out of range

Indexes can be only integer values, not floats. The following example will cause

a TypeError error:

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam[1]

'bat'

>>> spam[1.0]

Traceback (most recent call last):

File "<pyshell#13>", line 1, in <module>

spam[1.0]

TypeError: list indices must be integers or slices, not float

>>> spam[int(1.0)]

'bat'

ADUP/18CS55 Module2

Dept. of CSE

Lists can also contain other list values. The values in these lists of lists can be accessed

using multiple indexes, like so:

>>> spam = [['cat', 'bat'], [10, 20, 30, 40, 50]]

>>> spam[0]

['cat', 'bat']

>>> spam[0][1]

'bat'

>>> spam[1][4]

50

The first index dictates which list value to use, and the second indicates the value within

the list value. For example, spam[0][1] prints 'bat', the second value in the first list. If you

only use one index, the program will print the full list value at that index.

Negative Indexes

While indexes start at 0 and go up, you can also use negative integers for the index. The

integer value -1 refers to the last index in a list, the value -2 refers to the second-to-last index

in a list, and so on. Enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam[-1]

'elephant'

>>> spam[-3]

'bat'

>>> 'The ' + spam[-1] + ' is afraid of the ' + spam[-3] + '.'

'The elephant is afraid of the bat.'

Getting a List from Another List with Slices

Just as an index can get a single value from a list, a slice can get several values from a list, in

the form of a new list. A slice is typed between square brackets, like an index, but it has two

integers separated by a colon. Notice the difference between indexes and slices.

 spam[2] is a list with an index (one integer).

 spam[1:4] is a list with a slice (two integers).

In a slice, the first integer is the index where the slice starts. The second integer is the

index where the slice ends. A slice goes up to, but will not include, the value at the second

index. A slice evaluates to a new list value. Enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam[0:4]

['cat', 'bat', 'rat', 'elephant']

>>> spam[1:3]

['bat', 'rat']

>>> spam[0:-1]

['cat', 'bat', 'rat']

ADUP/18CS55 Module2

Dept. of CSE

As a shortcut, you can leave out one or both of the indexes on either side of the colon in

the slice. Leaving out the first index is the same as using 0, or the beginning of the list.

Leaving out the second index is the same as using the length of the list, which will slice to the

end of the list. Enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam[:2]

['cat', 'bat']

>>> spam[1:]

['bat', 'rat', 'elephant']

>>> spam[:]

['cat', 'bat', 'rat', 'elephant']

Getting a List’s Length with the len() Function

The len() function will return the number of values that are in a list value passed to it, just

like it can count the number of characters in a string value. Enter the following into the

interactive shell:

>>> spam = ['cat', 'dog', 'moose']

>>> len(spam)

3

Changing Values in a List with Indexes

Normally, a variable name goes on the left side of an assignment statement, like spam = 42.

However, you can also use an index of a list to change the value at that index. For

example, spam[1] = 'aardvark' means ―Assign the value at index 1 in the list spam to the

string 'aardvark'.‖ Enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam[1] = 'aardvark'

>>> spam

['cat', 'aardvark', 'rat', 'elephant']

>>> spam[2] = spam[1]

>>> spam

['cat', 'aardvark', 'aardvark', 'elephant']

>>> spam[-1] = 12345

>>> spam

['cat', 'aardvark', 'aardvark', 12345]

List Concatenation and List Replication

Lists can be concatenated and replicated just like strings. The + operator combines two lists

to create a new list value and the * operator can be used with a list and an integer value to

replicate the list. Enter the following into the interactive shell:

>>> [1, 2, 3] + ['A', 'B', 'C']

[1, 2, 3, 'A', 'B', 'C']

ADUP/18CS55 Module2

Dept. of CSE

>>> ['X', 'Y', 'Z'] * 3

['X', 'Y', 'Z', 'X', 'Y', 'Z', 'X', 'Y', 'Z']

>>> spam = [1, 2, 3]

>>> spam = spam + ['A', 'B', 'C']

>>> spam

[1, 2, 3, 'A', 'B', 'C']

Removing Values from Lists with del Statements

The del statement will delete values at an index in a list. All of the values in the list after the

deleted value will be moved up one index. For example, enter the following into the

interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> del spam[2]

>>> spam

['cat', 'bat', 'elephant']

>>> del spam[2]

>>> spam

['cat', 'bat']

The del statement can also be used on a simple variable to delete it, as if it were an

―unassignment‖ statement. If you try to use the variable after deleting it, you will get

a NameError error because the variable no longer exists. In practice, you almost never need

to delete simple variables. The del statement is mostly used to delete values from lists.

WORKING WITH LISTS

When you first begin writing programs, it’s tempting to create many individual variables to

store a group of similar values. For example, if I wanted to store the names of my cats, I

might be tempted to write code like this:

catName1 = 'Zophie'

catName2 = 'Pooka'

catName3 = 'Simon'

catName4 = 'Lady Macbeth'

catName5 = 'Fat-tail'

catName6 = 'Miss Cleo'

It turns out that this is a bad way to write code. (Also, I don’t actually own this many cats,

I swear.) For one thing, if the number of cats changes, your program will never be able to

store more cats than you have variables. These types of programs also have a lot of duplicate

or nearly identical code in them. Consider how much duplicate code is in the following

program, which you should enter into the file editor and save as allMyCats1.py:

print('Enter the name of cat 1:')

catName1 = input()

print('Enter the name of cat 2:')

catName2 = input()

ADUP/18CS55 Module2

Dept. of CSE

print('Enter the name of cat 3:')

catName3 = input()

print('Enter the name of cat 4:')

catName4 = input()

print('Enter the name of cat 5:')

catName5 = input()

print('Enter the name of cat 6:')

catName6 = input()

print('The cat names are:')

print(catName1 + ' ' + catName2 + ' ' + catName3 + ' ' + catName4 + ' ' +

catName5 + ' ' + catName6)

Instead of using multiple, repetitive variables, you can use a single variable that contains a

list value. For example, here’s a new and improved version of the allMyCats1.py program.

This new version uses a single list and can store any number of cats that the user types in. In

a new file editor window, enter the following source code and save it as allMyCats2.py:

catNames = []

while True:

print('Enter the name of cat ' + str(len(catNames) + 1) +

' (Or enter nothing to stop.):')

name = input()

if name == '':

break

catNames = catNames + [name] # list concatenation

print('The cat names are:')

for name in catNames:

print(' ' + name)

When you run this program, the output will look something like this:

Enter the name of cat 1 (Or enter nothing to stop.):

Zophie

Enter the name of cat 2 (Or enter nothing to stop.):

Pooka

Enter the name of cat 3 (Or enter nothing to stop.):

Simon

Enter the name of cat 4 (Or enter nothing to stop.):

Lady Macbeth

Enter the name of cat 5 (Or enter nothing to stop.):

Fat-tail

Enter the name of cat 6 (Or enter nothing to stop.):

Miss Cleo

Enter the name of cat 7 (Or enter nothing to stop.):

The cat names are:

Zophie

Pooka

ADUP/18CS55 Module2

Dept. of CSE

Simon

Lady Macbeth

Fat-tail

Miss Cleo

You can view the execution of these programs

at https://autbor.com/allmycats1/ and https://autbor.com/allmycats2/. The benefit of using a

list is that your data is now in a structure, so your program is much more flexible in

processing the data than it would be with several repetitive variables.

Using for Loops with Lists

In Chapter 2, you learned about using for loops to execute a block of code a certain number

of times. Technically, a for loop repeats the code block once for each item in a list value. For

example, if you ran this code:

for i in range(4):

print(i)

the output of this program would be as follows:

0

1

2

3

This is because the return value from range(4) is a sequence value that Python considers

similar to [0, 1, 2, 3]. (Sequences are described in ―Sequence Data Types‖ on page 93.) The

following program has the same output as the previous one:

for i in [0, 1, 2, 3]:

print(i)

The previous for loop actually loops through its clause with the variable i set to a

successive value in the [0, 1, 2, 3] list in each iteration.

A common Python technique is to use range(len(someList)) with a for loop to iterate over

the indexes of a list. For example, enter the following into the interactive shell:

>>> supplies = ['pens', 'staplers', 'flamethrowers', 'binders']

>>> for i in range(len(supplies)):

... print('Index ' + str(i) + ' in supplies is: ' + supplies[i])

Index 0 in supplies is: pens

Index 1 in supplies is: staplers

Index 2 in supplies is: flamethrowers

Index 3 in supplies is: binders

Using range(len(supplies)) in the previously shown for loop is handy because the code in

the loop can access the index (as the variable i) and the value at that index (as supplies[i]).

https://autbor.com/allmycats1/
https://autbor.com/allmycats2/
https://automatetheboringstuff.com/2e/chapter4/#calibre_link-106
https://automatetheboringstuff.com/2e/chapter4/#calibre_link-175
https://automatetheboringstuff.com/2e/chapter4/#calibre_link-709

ADUP/18CS55 Module2

Dept. of CSE

Best of all, range(len(supplies)) will iterate through all the indexes of supplies, no matter how

many items it contains.

The in and not in Operators

You can determine whether a value is or isn’t in a list with the in and not in operators. Like

other operators, in and not in are used in expressions and connect two values: a value to look

for in a list and the list where it may be found. These expressions will evaluate to a Boolean

value. Enter the following into the interactive shell:

>>> 'howdy' in ['hello', 'hi', 'howdy', 'heyas']

True

>>> spam = ['hello', 'hi', 'howdy', 'heyas']

>>> 'cat' in spam

False

>>> 'howdy' not in spam

False

>>> 'cat' not in spam

True

For example, the following program lets the user type in a pet name and then checks to

see whether the name is in a list of pets. Open a new file editor window, enter the following

code, and save it as myPets.py:

myPets = ['Zophie', 'Pooka', 'Fat-tail']

print('Enter a pet name:')

name = input()

if name not in myPets:

print('I do not have a pet named ' + name)

else:

print(name + ' is my pet.')

The output may look something like this:

Enter a pet name:

Footfoot

I do not have a pet named Footfoot

You can view the execution of this program at https://autbor.com/mypets/.

The Multiple Assignment Trick

The multiple assignment trick (technically called tuple unpacking) is a shortcut that lets you

assign multiple variables with the values in a list in one line of code. So instead of doing this:

>>> cat = ['fat', 'gray', 'loud']

>>> size = cat[0]

>>> color = cat[1]

>>> disposition = cat[2]

https://autbor.com/mypets/

ADUP/18CS55 Module2

Dept. of CSE

you could type this line of code:

>>> cat = ['fat', 'gray', 'loud']

>>> size, color, disposition = cat

The number of variables and the length of the list must be exactly equal, or Python will

give you a ValueError:

>>> cat = ['fat', 'gray', 'loud']

>>> size, color, disposition, name = cat

Traceback (most recent call last):

File "<pyshell#84>", line 1, in <module>

size, color, disposition, name = cat

ValueError: not enough values to unpack (expected 4, got 3)

Using the enumerate() Function with Lists

Instead of using the range(len(someList)) technique with a for loop to obtain the integer index

of the items in the list, you can call the enumerate() function instead. On each iteration of the

loop, enumerate() will return two values: the index of the item in the list, and the item in the

list itself. For example, this code is equivalent to the code in the ―Using for Loops with Lists‖

on page 84:

>>> supplies = ['pens', 'staplers', 'flamethrowers', 'binders']

>>> for index, item in enumerate(supplies):

... print('Index ' + str(index) + ' in supplies is: ' + item)

Index 0 in supplies is: pens

Index 1 in supplies is: staplers

Index 2 in supplies is: flamethrowers

Index 3 in supplies is: binders

The enumerate() function is useful if you need both the item and the item’s index in the

loop’s block.

Using the random.choice() and random.shuffle() Functions with Lists

The random module has a couple functions that accept lists for arguments.

The random.choice() function will return a randomly selected item from the list. Enter the

following into the interactive shell:

>>> import random

>>> pets = ['Dog', 'Cat', 'Moose']

>>> random.choice(pets)

'Dog'

>>> random.choice(pets)

'Cat'

>>> random.choice(pets)

'Cat'

https://automatetheboringstuff.com/2e/chapter4/#calibre_link-162
https://automatetheboringstuff.com/2e/chapter4/#calibre_link-710

ADUP/18CS55 Module2

Dept. of CSE

You can consider random.choice(someList) to be a shorter form

of someList[random.randint(0, len(someList) – 1].

The random.shuffle() function will reorder the items in a list. This function modifies the

list in place, rather than returning a new list. Enter the following into the interactive shell:

>>> import random

>>> people = ['Alice', 'Bob', 'Carol', 'David']

>>> random.shuffle(people)

>>> people

['Carol', 'David', 'Alice', 'Bob']

>>> random.shuffle(people)

>>> people

['Alice', 'David', 'Bob', 'Carol']

AUGMENTED ASSIGNMENT OPERATORS

When assigning a value to a variable, you will frequently use the variable itself. For example,

after assigning 42 to the variable spam, you would increase the value in spam by 1 with the

following code:

>>> spam = 42

>>> spam = spam + 1

>>> spam

43

As a shortcut, you can use the augmented assignment operator += to do the same thing:

>>> spam = 42

>>> spam += 1

>>> spam

43

There are augmented assignment operators for the +, -, *, /, and % operators, described

in Table 4-1.

Table 4-1: The Augmented Assignment Operators

Augmented assignment statement Equivalent assignment statement

spam += 1 spam = spam + 1

spam -= 1 spam = spam - 1

spam *= 1 spam = spam * 1

spam /= 1 spam = spam / 1

spam %= 1 spam = spam % 1

The += operator can also do string and list concatenation, and the *= operator can do

string and list replication. Enter the following into the interactive shell:

https://automatetheboringstuff.com/2e/chapter4/#calibre_link-711

ADUP/18CS55 Module2

Dept. of CSE

>>> spam = 'Hello,'

>>> spam += ' world!'

>>> spam

'Hello world!'

>>> bacon = ['Zophie']

>>> bacon *= 3

>>> bacon

['Zophie', 'Zophie', 'Zophie']

METHODS

A method is the same thing as a function, except it is ―called on‖ a value. For example, if a

list value were stored in spam, you would call the index() list method (which I’ll explain

shortly) on that list like so: spam.index('hello'). The method part comes after the value,

separated by a period.

Each data type has its own set of methods. The list data type, for example, has several

useful methods for finding, adding, removing, and otherwise manipulating values in a list.

Finding a Value in a List with the index() Method

List values have an index() method that can be passed a value, and if that value exists in the

list, the index of the value is returned. If the value isn’t in the list, then Python produces

a ValueError error. Enter the following into the interactive shell:

>>> spam = ['hello', 'hi', 'howdy', 'heyas']

>>> spam.index('hello')

0

>>> spam.index('heyas')

3

>>> spam.index('howdy howdy howdy')

Traceback (most recent call last):

File "<pyshell#31>", line 1, in <module>

spam.index('howdy howdy howdy')

ValueError: 'howdy howdy howdy' is not in list

When there are duplicates of the value in the list, the index of its first appearance is

returned. Enter the following into the interactive shell, and notice that index() returns 1, not 3:

>>> spam = ['Zophie', 'Pooka', 'Fat-tail', 'Pooka']

>>> spam.index('Pooka')

1

Adding Values to Lists with the append() and insert() Methods

To add new values to a list, use the append() and insert() methods. Enter the following into

the interactive shell to call the append() method on a list value stored in the variable spam:

>>> spam = ['cat', 'dog', 'bat']

>>> spam.append('moose')

ADUP/18CS55 Module2

Dept. of CSE

>>> spam

['cat', 'dog', 'bat', 'moose']

The previous append() method call adds the argument to the end of the list.

The insert() method can insert a value at any index in the list. The first argument to insert() is

the index for the new value, and the second argument is the new value to be inserted. Enter

the following into the interactive shell:

>>> spam = ['cat', 'dog', 'bat']

>>> spam.insert(1, 'chicken')

>>> spam

['cat', 'chicken', 'dog', 'bat']

Notice that the code is spam.append('moose') and spam.insert(1, 'chicken'), not spam =

spam.append('moose') and spam = spam.insert(1, 'chicken').

Neither append() nor insert() gives the new value of spam as its return value. (In fact, the

return value of append() and insert() is None, so you definitely wouldn’t want to store this as

the new variable value.) Rather, the list is modified in place. Modifying a list in place is

covered in more detail later in ―Mutable and Immutable Data Types‖ on page 94.

Methods belong to a single data type. The append() and insert() methods are list methods

and can be called only on list values, not on other values such as strings or integers. Enter the

following into the interactive shell, and note the AttributeError error messages that show up:

>>> eggs = 'hello'

>>> eggs.append('world')

Traceback (most recent call last):

File "<pyshell#19>", line 1, in <module>

eggs.append('world')

AttributeError: 'str' object has no attribute 'append'

>>> bacon = 42

>>> bacon.insert(1, 'world')

Traceback (most recent call last):

File "<pyshell#22>", line 1, in <module>

bacon.insert(1, 'world')

AttributeError: 'int' object has no attribute 'insert'

Removing Values from Lists with the remove() Method

The remove() method is passed the value to be removed from the list it is called on. Enter the

following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam.remove('bat')

>>> spam

['cat', 'rat', 'elephant']

Attempting to delete a value that does not exist in the list will result in a ValueError error.

For example, enter the following into the interactive shell and notice the error that is

displayed:

https://automatetheboringstuff.com/2e/chapter4/#calibre_link-176
https://automatetheboringstuff.com/2e/chapter4/#calibre_link-712

ADUP/18CS55 Module2

Dept. of CSE

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam.remove('chicken')

Traceback (most recent call last):

File "<pyshell#11>", line 1, in <module>

spam.remove('chicken')

ValueError: list.remove(x): x not in list

If the value appears multiple times in the list, only the first instance of the value will be

removed. Enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'cat', 'hat', 'cat']

>>> spam.remove('cat')

>>> spam

['bat', 'rat', 'cat', 'hat', 'cat']

The del statement is good to use when you know the index of the value you want to

remove from the list. The remove() method is useful when you know the value you want to

remove from the list.

Sorting the Values in a List with the sort() Method

Lists of number values or lists of strings can be sorted with the sort() method. For example,

enter the following into the interactive shell:

>>> spam = [2, 5, 3.14, 1, -7]

>>> spam.sort()

>>> spam

[-7, 1, 2, 3.14, 5]

>>> spam = ['ants', 'cats', 'dogs', 'badgers', 'elephants']

>>> spam.sort()

>>> spam

['ants', 'badgers', 'cats', 'dogs', 'elephants']

You can also pass True for the reverse keyword argument to have sort() sort the values in

reverse order. Enter the following into the interactive shell:

>>> spam.sort(reverse=True)

>>> spam

['elephants', 'dogs', 'cats', 'badgers', 'ants']

There are three things you should note about the sort() method. First, the sort() method

sorts the list in place; don’t try to capture the return value by writing code like spam =

spam.sort().

Second, you cannot sort lists that have both number values and string values in them,

since Python doesn’t know how to compare these values. Enter the following into the

interactive shell and notice the TypeError error:

ADUP/18CS55 Module2

Dept. of CSE

>>> spam = [1, 3, 2, 4, 'Alice', 'Bob']

>>> spam.sort()

Traceback (most recent call last):

File "<pyshell#70>", line 1, in <module>

spam.sort()

TypeError: '<' not supported between instances of 'str' and 'int'

Third, sort() uses ―ASCIIbetical order‖ rather than actual alphabetical order for sorting

strings. This means uppercase letters come before lowercase letters. Therefore, the

lowercase a is sorted so that it comes after the uppercase Z. For an example, enter the

following into the interactive shell:

>>> spam = ['Alice', 'ants', 'Bob', 'badgers', 'Carol', 'cats']

>>> spam.sort()

>>> spam

['Alice', 'Bob', 'Carol', 'ants', 'badgers', 'cats']

If you need to sort the values in regular alphabetical order, pass str.lower for

the key keyword argument in the sort() method call.

>>> spam = ['a', 'z', 'A', 'Z']

>>> spam.sort(key=str.lower)

>>> spam

['a', 'A', 'z', 'Z']

This causes the sort() function to treat all the items in the list as if they were lowercase

without actually changing the values in the list.

Reversing the Values in a List with the reverse() Method

If you need to quickly reverse the order of the items in a list, you can call the reverse() list

method. Enter the following into the interactive shell:

>>> spam = ['cat', 'dog', 'moose']

>>> spam.reverse()

>>> spam

['moose', 'dog', 'cat']

EXCEPTIONS TO INDENTATION RULES IN PYTHON

In most cases, the amount of indentation for a line of code tells Python what block it is in.

There are some exceptions to this rule, however. For example, lists can actually span several

lines in the source code file. The indentation of these lines does not matter; Python knows

that the list is not finished until it sees the ending square bracket. For example, you can have

code that looks like this:

spam = ['apples',

'oranges',

ADUP/18CS55 Module2

Dept. of CSE

Like the sort() list method, reverse() doesn’t return a list. This is why you

write spam.reverse(), instead of spam = spam.reverse().

EXAMPLE PROGRAM: MAGIC 8 BALL WITH A LIST

Using lists, you can write a much more elegant version of the previous chapter’s Magic 8

Ball program. Instead of several lines of nearly identical elif statements, you can create a

single list that the code works with. Open a new file editor window and enter the following

code. Save it as magic8Ball2.py.

import random

messages = ['It is certain',

'It is decidedly so',

'Yes definitely',

'Reply hazy try again',

'Ask again later',

'Concentrate and ask again',

'My reply is no',

'Outlook not so good',

'Very doubtful']

print(messages[random.randint(0, len(messages) - 1)])

You can view the execution of this program at https://autbor.com/magic8ball2/.

When you run this program, you’ll see that it works the same as the

previous magic8Ball.py program.

Notice the expression you use as the index for messages: random.randint (0,

len(messages) - 1). This produces a random number to use for the index, regardless of the

size of messages. That is, you’ll get a random number between 0 and the value

of len(messages) - 1. The benefit of this approach is that you can easily add and remove

strings to the messages list without changing other lines of code. If you later update your

'bananas',

'cats']

print(spam)

Of course, practically speaking, most people use Python’s behavior to make their lists look

pretty and readable, like the messages list in the Magic 8 Ball program.

You can also split up a single instruction across multiple lines using the \ line continuation

character at the end. Think of \ as saying, ―This instruction continues on the next line.‖ The

indentation on the line after a \ line continuation is not significant. For example, the following

is valid Python code:

print('Four score and seven ' + \

'years ago...')

These tricks are useful when you want to rearrange long lines of Python code to be a bit

more readable.

https://autbor.com/magic8ball2/

ADUP/18CS55 Module2

Dept. of CSE

code, there will be fewer lines you have to change and fewer chances for you to introduce

bugs.

SEQUENCE DATA TYPES

Lists aren’t the only data types that represent ordered sequences of values. For example,

strings and lists are actually similar if you consider a string to be a ―list‖ of single text

characters. The Python sequence data types include lists, strings, range objects returned

by range(), and tuples (explained in the ―The Tuple Data Type‖ on page 96). Many of the

things you can do with lists can also be done with strings and other values of sequence types:

indexing; slicing; and using them with for loops, with len(), and with the in and not

in operators. To see this, enter the following into the interactive shell:

>>> name = 'Zophie'

>>> name[0]

'Z'

>>> name[-2]

'i'

>>> name[0:4]

'Zoph'

>>> 'Zo' in name

True

>>> 'z' in name

False

>>> 'p' not in name

False

>>> for i in name:

... print('* * * ' + i + ' * * *')

* * * Z * * *

* * * o * * *

* * * p * * *

* * * h * * *

* * * i * * *

* * * e * * *

Mutable and Immutable Data Types

But lists and strings are different in an important way. A list value is a mutable data type: it

can have values added, removed, or changed. However, a string is immutable: it cannot be

changed. Trying to reassign a single character in a string results in a TypeError error, as you

can see by entering the following into the interactive shell:

>>> name = 'Zophie a cat'

>>> name[7] = 'the'

Traceback (most recent call last):

File "<pyshell#50>", line 1, in <module>

name[7] = 'the'

TypeError: 'str' object does not support item assignment

https://automatetheboringstuff.com/2e/chapter4/#calibre_link-177
https://automatetheboringstuff.com/2e/chapter4/#calibre_link-713

ADUP/18CS55 Module2

Dept. of CSE

The proper way to ―mutate‖ a string is to use slicing and concatenation to build

a new string by copying from parts of the old string. Enter the following into the interactive

shell:

>>> name = 'Zophie a cat'

>>> newName = name[0:7] + 'the' + name[8:12]

>>> name

'Zophie a cat'

>>> newName

'Zophie the cat'

We used [0:7] and [8:12] to refer to the characters that we don’t wish to replace. Notice

that the original 'Zophie a cat' string is not modified, because strings are immutable.

Although a list value is mutable, the second line in the following code does not modify the

list eggs:

>>> eggs = [1, 2, 3]

>>> eggs = [4, 5, 6]

>>> eggs

[4, 5, 6]

The list value in eggs isn’t being changed here; rather, an entirely new and different list

value ([4, 5, 6]) is overwriting the old list value ([1, 2, 3]). This is depicted in Figure 4-2.

If you wanted to actually modify the original list in eggs to contain [4, 5, 6], you would

have to do something like this:

>>> eggs = [1, 2, 3]

>>> del eggs[2]

>>> del eggs[1]

>>> del eggs[0]

>>> eggs.append(4)

>>> eggs.append(5)

>>> eggs.append(6)

>>> eggs

[4, 5, 6]

https://automatetheboringstuff.com/2e/chapter4/#calibre_link-714

ADUP/18CS55 Module2

Dept. of CSE

Figure 4-2: When eggs = [4, 5, 6] is executed, the contents of eggs are replaced with a new

list value.

In the first example, the list value that eggs ends up with is the same list value it started

with. It’s just that this list has been changed, rather than overwritten. Figure 4-3 depicts the

seven changes made by the first seven lines in the previous interactive shell example.

Figure 4-3: The del statement and the append() method modify the same list value in place.

Changing a value of a mutable data type (like what the del statement and append() method

do in the previous example) changes the value in place, since the variable’s value is not

replaced with a new list value.

Mutable versus immutable types may seem like a meaningless distinction, but ―Passing

References‖ on page 100 will explain the different behavior when calling functions with

mutable arguments versus immutable arguments. But first, let’s find out about the tuple data

type, which is an immutable form of the list data type.

The Tuple Data Type

https://automatetheboringstuff.com/2e/chapter4/#calibre_link-715
https://automatetheboringstuff.com/2e/chapter4/#calibre_link-181
https://automatetheboringstuff.com/2e/chapter4/#calibre_link-181
https://automatetheboringstuff.com/2e/chapter4/#calibre_link-716

ADUP/18CS55 Module2

Dept. of CSE

The tuple data type is almost identical to the list data type, except in two ways. First, tuples

are typed with parentheses, (and), instead of square brackets, [and]. For example, enter the

following into the interactive shell:

>>> eggs = ('hello', 42, 0.5)

>>> eggs[0]

'hello'
>>> eggs[1:3]

(42, 0.5)

>>> len(eggs)

3

But the main way that tuples are different from lists is that tuples, like strings, are

immutable. Tuples cannot have their values modified, appended, or removed. Enter the

following into the interactive shell, and look at the TypeError error message:

>>> eggs = ('hello', 42, 0.5)

>>> eggs[1] = 99

Traceback (most recent call last):

File "<pyshell#5>", line 1, in <module>

eggs[1] = 99

TypeError: 'tuple' object does not support item assignment

If you have only one value in your tuple, you can indicate this by placing a trailing comma

after the value inside the parentheses. Otherwise, Python will think you’ve just typed a value

inside regular parentheses. The comma is what lets Python know this is a tuple value. (Unlike

some other programming languages, it’s fine to have a trailing comma after the last item in a

list or tuple in Python.) Enter the following type() function calls into the interactive shell to

see the distinction:

>>> type(('hello',))

<class 'tuple'>
>>> type(('hello'))

<class 'str'>

You can use tuples to convey to anyone reading your code that you don’t intend for that

sequence of values to change. If you need an ordered sequence of values that never changes,

use a tuple. A second benefit of using tuples instead of lists is that, because they are

immutable and their contents don’t change, Python can implement some optimizations that

make code using tuples slightly faster than code using lists.

Converting Types with the list() and tuple() Functions

Just like how str(42) will return '42', the string representation of the integer 42, the

functions list() and tuple() will return list and tuple versions of the values passed to them.

Enter the following into the interactive shell, and notice that the return value is of a different

data type than the value passed:

ADUP/18CS55 Module2

Dept. of CSE

>>> tuple(['cat', 'dog', 5])

('cat', 'dog', 5)

>>> list(('cat', 'dog', 5))

['cat', 'dog', 5]

>>> list('hello')

['h', 'e', 'l', 'l', 'o']

Converting a tuple to a list is handy if you need a mutable version of a tuple value.

REFERENCES

As you’ve seen, variables ―store‖ strings and integer values. However, this explanation is a

simplification of what Python is actually doing. Technically, variables are storing references

to the computer memory locations where the values are stored. Enter the following into the

interactive shell:

>>> spam = 42

>>> cheese = spam

>>> spam = 100

>>> spam

100

>>> cheese

42

When you assign 42 to the spam variable, you are actually creating the 42 value in the

computer’s memory and storing a reference to it in the spam variable. When you copy the

value in spam and assign it to the variable cheese, you are actually copying the reference.

Both the spam and cheese variables refer to the 42 value in the computer’s memory. When

you later change the value in spam to 100, you’re creating a new 100 value and storing a

reference to it in spam. This doesn’t affect the value in cheese. Integers are immutable values

that don’t change; changing the spam variable is actually making it refer to a completely

different value in memory.

But lists don’t work this way, because list values can change; that is, lists are mutable.

Here is some code that will make this distinction easier to understand. Enter this into the

interactive shell:

➊ >>> spam = [0, 1, 2, 3, 4, 5]

➋ >>> cheese = spam # The reference is being copied, not the list.

➌ >>> cheese[1] = 'Hello!' # This changes the list value.

>>> spam

[0, 'Hello!', 2, 3, 4, 5]

>>> cheese # The cheese variable refers to the same list.

[0, 'Hello!', 2, 3, 4, 5]

This might look odd to you. The code touched only the cheese list, but it seems that both

the cheese and spam lists have changed.

When you create the list ➊, you assign a reference to it in the spam variable. But the next

line ➋ copies only the list reference in spam to cheese, not the list value itself. This means

ADUP/18CS55 Module2

Dept. of CSE

the values stored in spam and cheese now both refer to the same list. There is only one

underlying list because the list itself was never actually copied. So when you modify the first

element of cheese ➌, you are modifying the same list that spam refers to.

Remember that variables are like boxes that contain values. The previous figures in this

chapter show that lists in boxes aren’t exactly accurate, because list variables don’t actually

contain lists—they contain references to lists. (These references will have ID numbers that

Python uses internally, but you can ignore them.) Using boxes as a metaphor for

variables, Figure 4-4 shows what happens when a list is assigned to the spam variable.

Figure 4-4: spam = [0, 1, 2, 3, 4, 5] stores a reference to a list, not the actual list.

Then, in Figure 4-5, the reference in spam is copied to cheese. Only a new reference was

created and stored in cheese, not a new list. Note how both references refer to the same list.

Figure 4-5: spam = cheese copies the reference, not the list.

When you alter the list that cheese refers to, the list that spam refers to is also changed,

because both cheese and spam refer to the same list. You can see this in Figure 4-6.

https://automatetheboringstuff.com/2e/chapter4/#calibre_link-717
https://automatetheboringstuff.com/2e/chapter4/#calibre_link-718
https://automatetheboringstuff.com/2e/chapter4/#calibre_link-719

ADUP/18CS55 Module2

Dept. of CSE

Figure 4-6: cheese[1] = 'Hello!' modifies the list that both variables refer to.

Although Python variables technically contain references to values, people often casually

say that the variable contains the value.

Identity and the id() Function

You may be wondering why the weird behavior with mutable lists in the previous section

doesn’t happen with immutable values like integers or strings. We can use

Python’s id() function to understand this. All values in Python have a unique identity that can

be obtained with the id() function. Enter the following into the interactive shell:

>>> id('Howdy') # The returned number will be different on your machine.

44491136

When Python runs id('Howdy'), it creates the 'Howdy' string in the computer’s memory.

The numeric memory address where the string is stored is returned by the id() function.

Python picks this address based on which memory bytes happen to be free on your computer

at the time, so it’ll be different each time you run this code.

Like all strings, 'Howdy' is immutable and cannot be changed. If you ―change‖ the string

in a variable, a new string object is being made at a different place in memory, and the

variable refers to this new string. For example, enter the following into the interactive shell

and see how the identity of the string referred to by bacon changes:

>>> bacon = 'Hello'

>>> id(bacon)

44491136

>>> bacon += ' world!' # A new string is made from 'Hello' and ' world!'.

>>> id(bacon) # bacon now refers to a completely different string.

44609712

However, lists can be modified because they are mutable objects. The append() method

doesn’t create a new list object; it changes the existing list object. We call this ―modifying the

object in-place.‖

ADUP/18CS55 Module2

Dept. of CSE

>>> eggs = ['cat', 'dog'] # This creates a new list.

>>> id(eggs)

35152584

>>> eggs.append('moose') # append() modifies the list "in place".

>>> id(eggs) # eggs still refers to the same list as before.

35152584

>>> eggs = ['bat', 'rat', 'cow'] # This creates a new list, which has a new

identity.

>>> id(eggs) # eggs now refers to a completely different list.

44409800

If two variables refer to the same list (like spam and cheese in the previous section) and

the list value itself changes, both variables are affected because they both refer to the same

list. The append(), extend(), remove(), sort(), reverse(), and other list methods modify their

lists in place.

Python’s automatic garbage collector deletes any values not being referred to by any

variables to free up memory. You don’t need to worry about how the garbage collector

works, which is a good thing: manual memory management in other programming languages

is a common source of bugs.

Passing References

References are particularly important for understanding how arguments get passed to

functions. When a function is called, the values of the arguments are copied to the parameter

variables. For lists (and dictionaries, which I’ll describe in the next chapter), this means a

copy of the reference is used for the parameter. To see the consequences of this, open a new

file editor window, enter the following code, and save it as passingReference.py:

def eggs(someParameter):

someParameter.append('Hello')

spam = [1, 2, 3]

eggs(spam)

print(spam)

Notice that when eggs() is called, a return value is not used to assign a new value to spam.

Instead, it modifies the list in place, directly. When run, this program produces the following

output:

[1, 2, 3, 'Hello']

Even though spam and someParameter contain separate references, they both refer to the

same list. This is why the append('Hello') method call inside the function affects the list even

after the function call has returned.

Keep this behavior in mind: forgetting that Python handles list and dictionary variables

this way can lead to confusing bugs.

The copy Module’s copy() and deepcopy() Functions

ADUP/18CS55 Module2

Dept. of CSE

Although passing around references is often the handiest way to deal with lists and

dictionaries, if the function modifies the list or dictionary that is passed, you may not want

these changes in the original list or dictionary value. For this, Python provides a module

named copy that provides both the copy() and deepcopy() functions. The first of

these, copy.copy(), can be used to make a duplicate copy of a mutable value like a list or

dictionary, not just a copy of a reference. Enter the following into the interactive shell:

>>> import copy

>>> spam = ['A', 'B', 'C', 'D']

>>> id(spam)

44684232

>>> cheese = copy.copy(spam)

>>> id(cheese) # cheese is a different list with different identity.

44685832

>>> cheese[1] = 42

>>> spam

['A', 'B', 'C', 'D']

>>> cheese

['A', 42, 'C', 'D']

Now the spam and cheese variables refer to separate lists, which is why only the list

in cheese is modified when you assign 42 at index 1. As you can see in Figure 4-7, the

reference ID numbers are no longer the same for both variables because the variables refer to

independent lists.

Figure 4-7: cheese = copy.copy(spam) creates a second list that can be modified

independently of the first.

If the list you need to copy contains lists, then use the copy.deepcopy() function instead

of copy.copy(). The deepcopy() function will copy these inner lists as well.

A SHORT PROGRAM: CONWAY’S GAME OF LIFE

https://automatetheboringstuff.com/2e/chapter4/#calibre_link-720

ADUP/18CS55 Module2

Dept. of CSE

Conway’s Game of Life is an example of cellular automata: a set of rules governing the

behavior of a field made up of discrete cells. In practice, it creates a pretty animation to look

at. You can draw out each step on graph paper, using the squares as cells. A filled-in square

will be ―alive‖ and an empty square will be ―dead.‖ If a living square has two or three living

neighbors, it continues to live on the next step. If a dead square has exactly three living

neighbors, it comes alive on the next step. Every other square dies or remains dead on the

next step. You can see an example of the progression of steps in Figure 4-8.

Figure 4-8: Four steps in a Conway’s Game of Life simulation

Even though the rules are simple, there are many surprising behaviors that emerge.

Patterns in Conway’s Game of Life can move, self-replicate, or even mimic CPUs. But at the

foundation of all of this complex, advanced behavior is a rather simple program.

We can use a list of lists to represent the two-dimensional field. The inner list represents

each column of squares and stores a '#' hash string for living squares and a ' ' space string for

dead squares. Type the following source code into the file editor, and save the file

as conway.py. It’s fine if you don’t quite understand how all of the code works; just enter it

and follow along with comments and explanations provided here as close as you can:

Conway's Game of Life

import random, time, copy

WIDTH = 60

HEIGHT = 20

Create a list of list for the cells:

nextCells = []

for x in range(WIDTH):

column = [] # Create a new column.

for y in range(HEIGHT):

if random.randint(0, 1) == 0:

column.append('#') # Add a living cell.

else:

column.append(' ') # Add a dead cell.

nextCells.append(column) # nextCells is a list of column lists.

while True: # Main program loop.

print('\n\n\n\n\n') # Separate each step with newlines.

currentCells = copy.deepcopy(nextCells)

Print currentCells on the screen:

for y in range(HEIGHT):

https://automatetheboringstuff.com/2e/chapter4/#calibre_link-721

ADUP/18CS55 Module2

Dept. of CSE

for x in range(WIDTH):

print(currentCells[x][y], end='') # Print the # or space.

print() # Print a newline at the end of the row.

Calculate the next step's cells based on current step's cells:

for x in range(WIDTH):

for y in range(HEIGHT):

Get neighboring coordinates:

`% WIDTH` ensures leftCoord is always between 0 and WIDTH - 1

leftCoord = (x - 1) % WIDTH

rightCoord = (x + 1) % WIDTH

aboveCoord = (y - 1) % HEIGHT

belowCoord = (y + 1) % HEIGHT

Count number of living neighbors:

numNeighbors = 0

if currentCells[leftCoord][aboveCoord] == '#':

numNeighbors += 1 # Top-left neighbor is alive.

if currentCells[x][aboveCoord] == '#':

numNeighbors += 1 # Top neighbor is alive.

if currentCells[rightCoord][aboveCoord] == '#':

numNeighbors += 1 # Top-right neighbor is alive.

if currentCells[leftCoord][y] == '#':

numNeighbors += 1 # Left neighbor is alive.

if currentCells[rightCoord][y] == '#':

numNeighbors += 1 # Right neighbor is alive.

if currentCells[leftCoord][belowCoord] == '#':

numNeighbors += 1 # Bottom-left neighbor is alive.

if currentCells[x][belowCoord] == '#':

numNeighbors += 1 # Bottom neighbor is alive.

if currentCells[rightCoord][belowCoord] == '#':

numNeighbors += 1 # Bottom-right neighbor is alive.

Set cell based on Conway's Game of Life rules:

if currentCells[x][y] == '#' and (numNeighbors == 2 or

numNeighbors == 3):

Living cells with 2 or 3 neighbors stay alive:

nextCells[x][y] = '#'

elif currentCells[x][y] == ' ' and numNeighbors == 3:

Dead cells with 3 neighbors become alive:

nextCells[x][y] = '#'

else:

Everything else dies or stays dead:

nextCells[x][y] = ' '

time.sleep(1) # Add a 1-second pause to reduce flickering.

Let’s look at this code line by line, starting at the top.

ADUP/18CS55 Module2

Dept. of CSE

Conway's Game of Life

import random, time, copy

WIDTH = 60

HEIGHT = 20

First we import modules that contain functions we’ll need, namely

the random.randint(), time.sleep(), and copy.deepcopy() functions.

Create a list of list for the cells:

nextCells = []

for x in range(WIDTH):

column = [] # Create a new column.

for y in range(HEIGHT):

if random.randint(0, 1) == 0:

column.append('#') # Add a living cell.

else:

column.append(' ') # Add a dead cell.

nextCells.append(column) # nextCells is a list of column lists.

The very first step of our cellular automata will be completely random. We need to create

a list of lists data structure to store the '#' and ' ' strings that represent a living or dead cell, and

their place in the list of lists reflects their position on the screen. The inner lists each represent

a column of cells. The random.randint(0, 1) call gives an even 50/50 chance between the cell

starting off alive or dead.

We put this list of lists in a variable called nextCells, because the first step in our main

program loop will be to copy nextCells into currentCells. For our list of lists data structure,

the x-coordinates start at 0 on the left and increase going right, while the y-coordinates start

at 0 at the top and increase going down. So nextCells[0][0] will represent the cell at the top

left of the screen, while nextCells[1][0] represents the cell to the right of that cell

and nextCells[0][1] represents the cell beneath it.

while True: # Main program loop.

print('\n\n\n\n\n') # Separate each step with newlines.

currentCells = copy.deepcopy(nextCells)

Each iteration of our main program loop will be a single step of our cellular automata. On

each step, we’ll copy nextCells to currentCells, print currentCells on the screen, and then use

the cells in currentCells to calculate the cells in nextCells.

Print currentCells on the screen:
for y in range(HEIGHT):

for x in range(WIDTH):

print(currentCells[x][y], end='') # Print the # or space.

print() # Print a newline at the end of the row.

These nested for loops ensure that we print a full row of cells to the screen, followed by a

newline character at the end of the row. We repeat this for each row in nextCells.

ADUP/18CS55 Module2

Dept. of CSE

Calculate the next step's cells based on current step's cells:

for x in range(WIDTH):

for y in range(HEIGHT):

Get neighboring coordinates:

`% WIDTH` ensures leftCoord is always between 0 and WIDTH - 1

leftCoord = (x - 1) % WIDTH

rightCoord = (x + 1) % WIDTH

aboveCoord = (y - 1) % HEIGHT

belowCoord = (y + 1) % HEIGHT

Next, we need to use two nested for loops to calculate each cell for the next step. The

living or dead state of the cell depends on the neighbors, so let’s first calculate the index of

the cells to the left, right, above, and below the current x- and y-coordinates.

The % mod operator performs a ―wraparound.‖ The left neighbor of a cell in the leftmost

column 0 would be 0 - 1 or -1. To wrap this around to the rightmost column’s index, 59, we

calculate (0 - 1) % WIDTH. Since WIDTH is 60, this expression evaluates to 59. This mod-

wraparound technique works for the right, above, and below neighbors as well.

Count number of living neighbors:

numNeighbors = 0

if currentCells[leftCoord][aboveCoord] == '#':

numNeighbors += 1 # Top-left neighbor is alive.

if currentCells[x][aboveCoord] == '#':

numNeighbors += 1 # Top neighbor is alive.

if currentCells[rightCoord][aboveCoord] == '#':

numNeighbors += 1 # Top-right neighbor is alive.

if currentCells[leftCoord][y] == '#':

numNeighbors += 1 # Left neighbor is alive.

if currentCells[rightCoord][y] == '#':

numNeighbors += 1 # Right neighbor is alive.

if currentCells[leftCoord][belowCoord] == '#':

numNeighbors += 1 # Bottom-left neighbor is alive.

if currentCells[x][belowCoord] == '#':

numNeighbors += 1 # Bottom neighbor is alive.

if currentCells[rightCoord][belowCoord] == '#':

numNeighbors += 1 # Bottom-right neighbor is alive.

To decide if the cell at nextCells[x][y] should be living or dead, we need to count the

number of living neighbors currentCells[x][y] has. This series of if statements checks each of

the eight neighbors of this cell, and adds 1 to numNeighbors for each living one.

Set cell based on Conway's Game of Life rules:
if currentCells[x][y] == '#' and (numNeighbors == 2 or

numNeighbors == 3):

Living cells with 2 or 3 neighbors stay alive:

nextCells[x][y] = '#'

elif currentCells[x][y] == ' ' and numNeighbors == 3:

Dead cells with 3 neighbors become alive:

ADUP/18CS55 Module2

Dept. of CSE

nextCells[x][y] = '#'

else:

Everything else dies or stays dead:

nextCells[x][y] = ' '

time.sleep(1) # Add a 1-second pause to reduce flickering.

Now that we know the number of living neighbors for the cell at currentCells[x][y], we

can set nextCells[x][y] to either '#' or ' '. After we loop over every possible x- and y-

coordinate, the program takes a 1-second pause by calling time.sleep(1). Then the program

execution goes back to the start of the main program loop to continue with the next step.

Several patterns have been discovered with names such as ―glider,‖ ―propeller,‖ or

―heavyweight spaceship.‖ The glider pattern, pictured in Figure 4-8, results in a pattern that

―moves‖ diagonally every four steps. You can create a single glider by replacing this line in

our conway.py program:

if random.randint(0, 1) == 0:

with this line:

if (x, y) in ((1, 0), (2, 1), (0, 2), (1, 2), (2, 2)):

You can find out more about the intriguing devices made using Conway’s Game of Life

by searching the web. And you can find other short, text-based Python programs like this one

at https://github.com/asweigart/pythonstdiogames.

SUMMARY

Lists are useful data types since they allow you to write code that works on a modifiable

number of values in a single variable. Later in this book, you will see programs using lists to

do things that would be difficult or impossible to do without them.

Lists are a sequence data type that is mutable, meaning that their contents can change.

Tuples and strings, though also sequence data types, are immutable and cannot be changed. A

variable that contains a tuple or string value can be overwritten with a new tuple or string

value, but this is not the same thing as modifying the existing value in place—like, say,

the append() or remove() methods do on lists.

Variables do not store list values directly; they store references to lists. This is an

important distinction when you are copying variables or passing lists as arguments in

function calls. Because the value that is being copied is the list reference, be aware that any

changes you make to the list might impact another variable in your program. You can

use copy() or deepcopy() if you want to make changes to a list in one variable without

modifying the original list.

PRACTICE QUESTIONS

1. What is []?

2. How would you assign the value 'hello' as the third value in a list stored in a variable

named spam? (Assume spam contains [2, 4, 6, 8, 10].)

For the following three questions, let’s say spam contains the list ['a', 'b', 'c', 'd'].

https://automatetheboringstuff.com/2e/chapter4/#calibre_link-721
https://github.com/asweigart/pythonstdiogames

ADUP/18CS55 Module2

Dept. of CSE

3. What does spam[int(int('3' * 2) // 11)] evaluate to?

4. What does spam[-1] evaluate to?

5. What does spam[:2] evaluate to?

For the following three questions, let’s say bacon contains the list [3.14, 'cat', 11, 'cat',

True].

6. What does bacon.index('cat') evaluate to?

7. What does bacon.append(99) make the list value in bacon look like?

8. What does bacon.remove('cat') make the list value in bacon look like?

9. What are the operators for list concatenation and list replication?

10. What is the difference between the append() and insert() list methods?

11. What are two ways to remove values from a list?

12. Name a few ways that list values are similar to string values.

13. What is the difference between lists and tuples?

14. How do you type the tuple value that has just the integer value 42 in it?

15. How can you get the tuple form of a list value? How can you get the list form of a tuple

value?

16. Variables that ―contain‖ list values don’t actually contain lists directly. What do they

contain instead?

17. What is the difference between copy.copy() and copy.deepcopy()?

PRACTICE PROJECTS

For practice, write programs to do the following tasks.

Comma Code

Say you have a list value like this:

spam = ['apples', 'bananas', 'tofu', 'cats']

Write a function that takes a list value as an argument and returns a string with all the

items separated by a comma and a space, with and inserted before the last item. For example,

passing the previous spam list to the function would return 'apples, bananas, tofu, and cats'.

But your function should be able to work with any list value passed to it. Be sure to test the

case where an empty list [] is passed to your function.

Coin Flip Streaks

For this exercise, we’ll try doing an experiment. If you flip a coin 100 times and write down

an ―H‖ for each heads and ―T‖ for each tails, you’ll create a list that looks like ―T T T T H H

H H T T.‖ If you ask a human to make up 100 random coin flips, you’ll probably end up with

alternating head-tail results like ―H T H T H H T H T T,‖ which looks random (to humans),

but isn’t mathematically random. A human will almost never write down a streak of six heads

or six tails in a row, even though it is highly likely to happen in truly random coin flips.

Humans are predictably bad at being random.

ADUP/18CS55 Module2

Dept. of CSE

Write a program to find out how often a streak of six heads or a streak of six tails comes

up in a randomly generated list of heads and tails. Your program breaks up the experiment

into two parts: the first part generates a list of randomly selected 'heads' and 'tails' values, and

the second part checks if there is a streak in it. Put all of this code in a loop that repeats the

experiment 10,000 times so we can find out what percentage of the coin flips contains a

streak of six heads or tails in a row. As a hint, the function call random.randint(0, 1) will

return a 0 value 50% of the time and a 1 value the other 50% of the time.

You can start with the following template:

import random

numberOfStreaks = 0

for experimentNumber in range(10000):

Code that creates a list of 100 'heads' or 'tails' values.

Code that checks if there is a streak of 6 heads or tails in a row.

print('Chance of streak: %s%%' % (numberOfStreaks / 100))

Of course, this is only an estimate, but 10,000 is a decent sample size. Some knowledge of

mathematics could give you the exact answer and save you the trouble of writing a program,

but programmers are notoriously bad at math.

Character Picture Grid

Say you have a list of lists where each value in the inner lists is a one-character string, like

this:

grid = [['.', '.', '.', '.', '.', '.'],

['.', 'O', 'O', '.', '.', '.'],
['O', 'O', 'O', 'O', '.', '.'],

['O', 'O', 'O', 'O', 'O', '.'],

['.', 'O', 'O', 'O', 'O', 'O'],

['O', 'O', 'O', 'O', 'O', '.'],

['O', 'O', 'O', 'O', '.', '.'],

['.', 'O', 'O', '.', '.', '.'],

['.', '.', '.', '.', '.', '.']]

Think of grid[x][y] as being the character at the x- and y-coordinates of a ―picture‖ drawn

with text characters. The (0, 0) origin is in the upper-left corner, the x-coordinates increase

going right, and the y-coordinates increase going down.

Copy the previous grid value, and write code that uses it to print the image.

..OO.OO..

.OOOOOOO.

.OOOOOOO.

..OOOOO..

...OOO...

....O....

ADUP/18CS55 Module2

Dept. of CSE

Hint: You will need to use a loop in a loop in order to print grid[0][0], then grid[1][0],

then grid[2][0], and so on, up to grid[8][0]. This will finish the first row, so then print a

newline. Then your program should print grid[0][1], then grid[1][1], then grid[2][1], and so

on. The last thing your program will print is grid[8][5].

Also, remember to pass the end keyword argument to print() if you don’t want a newline

printed automatically after each print() call.

 Home | Buy on No Starch Press (comes with free ebook) | Buy on Amazon | @AlSweigart |

Support the author by purchasing the print/ebook bundle from No Starch Press or separately

on Amazon.

Read the author's other Creative Commons licensed Python books.

https://automatetheboringstuff.com/
https://www.nostarch.com/automatestuff2
https://www.amazon.com/gp/product/1593279922/ref%3Das_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1593279922&linkCode=as2&tag=playwithpyth-20&linkId=ee4ebe796322bf7f7598b85afaefb44a
https://twitter.com/AlSweigart
https://www.nostarch.com/automatestuff2
https://www.amazon.com/gp/product/1593279922/ref%3Das_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1593279922&linkCode=as2&tag=playwithpyth-20&linkId=ee4ebe796322bf7f7598b85afaefb44a

ADUP/18CS55 Module2

Dept. of CSE

ADUP/18CS55 Module2

Dept. of CSE

5

DICTIONARIES AND STRUCTURING DATA

In this chapter, I will cover the dictionary data type, which provides a flexible way to access

and organize data. Then, combining dictionaries with your knowledge of lists from the

previous chapter, you’ll learn how to create a data structure to model a tic-tac-toe board.

THE DICTIONARY DATA TYPE

Like a list, a dictionary is a mutable collection of many values. But unlike indexes for lists,

indexes for dictionaries can use many different data types, not just integers. Indexes for

dictionaries are called keys, and a key with its associated value is called a key-value pair.

In code, a dictionary is typed with braces, {}. Enter the following into the interactive

shell:

>>> myCat = {'size': 'fat', 'color': 'gray', 'disposition': 'loud'}

This assigns a dictionary to the myCat variable. This dictionary’s keys are 'size', 'color',

and 'disposition'. The values for these keys are 'fat', 'gray', and 'loud', respectively. You can

access these values through their keys:

>>> myCat['size']

'fat'

>>> 'My cat has ' + myCat['color'] + ' fur.'

'My cat has gray fur.'

Dictionaries can still use integer values as keys, just like lists use integers for indexes, but

they do not have to start at 0 and can be any number.

>>> spam = {12345: 'Luggage Combination', 42: 'The Answer'}

Dictionaries vs. Lists

Unlike lists, items in dictionaries are unordered. The first item in a list named spam would

be spam[0]. But there is no ―first‖ item in a dictionary. While the order of items matters for

ADUP/18CS55 Module2

Dept. of CSE

determining whether two lists are the same, it does not matter in what order the key-value

pairs are typed in a dictionary. Enter the following into the interactive shell:

>>> spam = ['cats', 'dogs', 'moose']

>>> bacon = ['dogs', 'moose', 'cats']

>>> spam == bacon

False
>>> eggs = {'name': 'Zophie', 'species': 'cat', 'age': '8'}

>>> ham = {'species': 'cat', 'age': '8', 'name': 'Zophie'}

>>> eggs == ham

True

Because dictionaries are not ordered, they can’t be sliced like lists.

Trying to access a key that does not exist in a dictionary will result in a KeyError error

message, much like a list’s ―out-of-range‖ IndexError error message. Enter the following into

the interactive shell, and notice the error message that shows up because there is

no 'color' key:

>>> spam = {'name': 'Zophie', 'age': 7}

>>> spam['color']

Traceback (most recent call last):

File "<pyshell#1>", line 1, in <module>

spam['color']

KeyError: 'color'

Though dictionaries are not ordered, the fact that you can have arbitrary values for the

keys allows you to organize your data in powerful ways. Say you wanted your program to

store data about your friends’ birthdays. You can use a dictionary with the names as keys and

the birthdays as values. Open a new file editor window and enter the following code. Save it

as birthdays.py.

➊ birthdays = {'Alice': 'Apr 1', 'Bob': 'Dec 12', 'Carol': 'Mar 4'}

while True:

print('Enter a name: (blank to quit)')

name = input()

if name == '':

break

➋ if name in birthdays:

➌ print(birthdays[name] + ' is the birthday of ' + name)

else:

print('I do not have birthday information for ' + name)

print('What is their birthday?')

bday = input()

➍ birthdays[name] = bday

print('Birthday database updated.')

ADUP/18CS55 Module2

Dept. of CSE

You can view the execution of this program at https://autbor.com/bdaydb. You create an

initial dictionary and store it in birthdays ➊. You can see if the entered name exists as a key

in the dictionary with the in keyword ➋, just as you did for lists. If the name is in the

dictionary, you access the associated value using square brackets ➌; if not, you can add it

using the same square bracket syntax combined with the assignment operator ➍.

When you run this program, it will look like this:

Enter a name: (blank to quit)

Alice

Apr 1 is the birthday of Alice

Enter a name: (blank to quit)

Eve

I do not have birthday information for Eve

What is their birthday?

Dec 5

Birthday database updated.

Enter a name: (blank to quit)

Eve

Dec 5 is the birthday of Eve

Enter a name: (blank to quit)

Of course, all the data you enter in this program is forgotten when the program terminates.

You’ll learn how to save data to files on the hard drive in Chapter 9.

ORDERED DICTIONARIES IN PYTHON 3.7

While they’re still not ordered and have no ―first‖ key-value pair, dictionaries in Python 3.7

and later will remember the insertion order of their key-value pairs if you create a sequence

value from them. For example, notice the order of items in the lists made from

the eggs and ham dictionaries matches the order in which they were entered:

>>> eggs = {'name': 'Zophie', 'species': 'cat', 'age': '8'}

>>> list(eggs)

['name', 'species', 'age']

>>> ham = {'species': 'cat', 'age': '8', 'name': 'Zophie'}

>>> list(ham)

['species', 'age', 'name']

The dictionaries are still unordered, as you can’t access items in them using integer

indexes like eggs[0] or ham[2]. You shouldn’t rely on this behavior, as dictionaries in older

versions of Python don’t remember the insertion order of key-value pairs. For example,

notice how the list doesn’t match the insertion order of the dictionary’s key-value pairs when

I run this code in Python 3.5:

>>> spam = {}

>>> spam['first key'] = 'value'

>>> spam['second key'] = 'value'

>>> spam['third key'] = 'value'

https://autbor.com/bdaydb
https://automatetheboringstuff.com/2e/chapter5/#calibre_link-32

ADUP/18CS55 Module2

Dept. of CSE

The keys(), values(), and items() Methods

There are three dictionary methods that will return list-like values of the dictionary’s keys,

values, or both keys and values: keys(), values(), and items(). The values returned by these

methods are not true lists: they cannot be modified and do not have an append() method. But

these data types (dict_keys, dict_values, and dict_items, respectively) can be used

in for loops. To see how these methods work, enter the following into the interactive shell:

>>> spam = {'color': 'red', 'age': 42}

>>> for v in spam.values():

... print(v)

red

42

Here, a for loop iterates over each of the values in the spam dictionary. A for loop can also

iterate over the keys or both keys and values:

>>> for k in spam.keys():

... print(k)

color

age

>>> for i in spam.items():

... print(i)

('color', 'red')

('age', 42)

When you use the keys(), values(), and items() methods, a for loop can iterate over the

keys, values, or key-value pairs in a dictionary, respectively. Notice that the values in

the dict_items value returned by the items() method are tuples of the key and value.

If you want a true list from one of these methods, pass its list-like return value to

the list() function. Enter the following into the interactive shell:

>>> spam = {'color': 'red', 'age': 42}

>>> spam.keys()

dict_keys(['color', 'age'])

>>> list(spam.keys())

['color', 'age']

The list(spam.keys()) line takes the dict_keys value returned from keys() and passes it

to list(), which then returns a list value of ['color', 'age'].

You can also use the multiple assignment trick in a for loop to assign the key and value to

separate variables. Enter the following into the interactive shell:

>>> list(spam)

['first key', 'third key', 'second key']

ADUP/18CS55 Module2

Dept. of CSE

>>> spam = {'color': 'red', 'age': 42}

>>> for k, v in spam.items():

... print('Key: ' + k + ' Value: ' + str(v))

Key: age Value: 42

Key: color Value: red

Checking Whether a Key or Value Exists in a Dictionary

Recall from the previous chapter that the in and not in operators can check whether a value

exists in a list. You can also use these operators to see whether a certain key or value exists in

a dictionary. Enter the following into the interactive shell:

>>> spam = {'name': 'Zophie', 'age': 7}

>>> 'name' in spam.keys()

True

>>> 'Zophie' in spam.values()

True

>>> 'color' in spam.keys()

False

>>> 'color' not in spam.keys()

True

>>> 'color' in spam

False

In the previous example, notice that 'color' in spam is essentially a shorter version of

writing 'color' in spam.keys(). This is always the case: if you ever want to check whether a

value is (or isn’t) a key in the dictionary, you can simply use the in (or not in) keyword with

the dictionary value itself.

The get() Method

It’s tedious to check whether a key exists in a dictionary before accessing that key’s value.

Fortunately, dictionaries have a get() method that takes two arguments: the key of the value

to retrieve and a fallback value to return if that key does not exist.

Enter the following into the interactive shell:

>>> picnicItems = {'apples': 5, 'cups': 2}

>>> 'I am bringing ' + str(picnicItems.get('cups', 0)) + ' cups.'

'I am bringing 2 cups.'

>>> 'I am bringing ' + str(picnicItems.get('eggs', 0)) + ' eggs.'

'I am bringing 0 eggs.'

Because there is no 'eggs' key in the picnicItems dictionary, the default value 0 is returned

by the get() method. Without using get(), the code would have caused an error message, such

as in the following example:

>>> picnicItems = {'apples': 5, 'cups': 2}

>>> 'I am bringing ' + str(picnicItems['eggs']) + ' eggs.'

ADUP/18CS55 Module2

Dept. of CSE

Traceback (most recent call last):

File "<pyshell#34>", line 1, in <module>

'I am bringing ' + str(picnicItems['eggs']) + ' eggs.'

KeyError: 'eggs'

The setdefault() Method

You’ll often have to set a value in a dictionary for a certain key only if that key does not

already have a value. The code looks something like this:

spam = {'name': 'Pooka', 'age': 5}

if 'color' not in spam:

spam['color'] = 'black'

The setdefault() method offers a way to do this in one line of code. The first argument

passed to the method is the key to check for, and the second argument is the value to set at

that key if the key does not exist. If the key does exist, the setdefault() method returns the

key’s value. Enter the following into the interactive shell:

>>> spam = {'name': 'Pooka', 'age': 5}

>>> spam.setdefault('color', 'black')

'black'

>>> spam

{'color': 'black', 'age': 5, 'name': 'Pooka'}

>>> spam.setdefault('color', 'white')

'black'

>>> spam

{'color': 'black', 'age': 5, 'name': 'Pooka'}

The first time setdefault() is called, the dictionary in spam changes to {'color': 'black',

'age': 5, 'name': 'Pooka'}. The method returns the value 'black' because this is now the value

set for the key 'color'. When spam.setdefault('color', 'white') is called next, the value for that

key is not changed to 'white', because spam already has a key named 'color'.

The setdefault() method is a nice shortcut to ensure that a key exists. Here is a short

program that counts the number of occurrences of each letter in a string. Open the file editor

window and enter the following code, saving it as characterCount.py:

message = 'It was a bright cold day in April, and the clocks were striking

thirteen.'

count = {}

for character in message:

➊ count.setdefault(character, 0)

➋ count[character] = count[character] + 1

print(count)

ADUP/18CS55 Module2

Dept. of CSE

You can view the execution of this program at https://autbor.com/setdefault. The program

loops over each character in the message variable’s string, counting how often each character

appears. The setdefault() method call ➊ ensures that the key is in the count dictionary (with a

default value of 0) so the program doesn’t throw a KeyError error when count[character] =

count[character] + 1 is executed ➋. When you run this program, the output will look like

this:

{' ': 13, ',': 1, '.': 1, 'A': 1, 'I': 1, 'a': 4, 'c': 3, 'b': 1, 'e': 5, 'd': 3, 'g': 2,

'i': 6, 'h': 3, 'k': 2, 'l': 3, 'o': 2, 'n': 4, 'p': 1, 's': 3, 'r': 5, 't': 6, 'w': 2, 'y': 1}

From the output, you can see that the lowercase letter c appears 3 times, the space

character appears 13 times, and the uppercase letter A appears 1 time. This program will work

no matter what string is inside the message variable, even if the string is millions of

characters long!

PRETTY PRINTING

If you import the pprint module into your programs, you’ll have access to

the pprint() and pformat() functions that will ―pretty print‖ a dictionary’s values. This is

helpful when you want a cleaner display of the items in a dictionary than

what print() provides. Modify the previous characterCount.py program and save it

as prettyCharacterCount.py.

import pprint

message = 'It was a bright cold day in April, and the clocks were striking

thirteen.'

count = {}

for character in message:

count.setdefault(character, 0)

count[character] = count[character] + 1

pprint.pprint(count)

You can view the execution of this program at https://autbor.com/pprint/. This time, when

the program is run, the output looks much cleaner, with the keys sorted.

{' ': 13,

',': 1,

'.': 1,

'A': 1,

'I': 1,

--snip--

't': 6,

'w': 2,

'y': 1}

The pprint.pprint() function is especially helpful when the dictionary itself contains nested

lists or dictionaries.

https://autbor.com/setdefault
https://autbor.com/pprint/

ADUP/18CS55 Module2

Dept. of CSE

If you want to obtain the prettified text as a string value instead of displaying it on the

screen, call pprint.pformat() instead. These two lines are equivalent to each other:

pprint.pprint(someDictionaryValue)

print(pprint.pformat(someDictionaryValue))

USING DATA STRUCTURES TO MODEL REAL-WORLD THINGS

Even before the internet, it was possible to play a game of chess with someone on the other

side of the world. Each player would set up a chessboard at their home and then take turns

mailing a postcard to each other describing each move. To do this, the players needed a way

to unambiguously describe the state of the board and their moves.

In algebraic chess notation, the spaces on the chessboard are identified by a number and

letter coordinate, as in Figure 5-1.

Figure 5-1: The coordinates of a chessboard in algebraic chess notation

The chess pieces are identified by letters: K for king, Q for queen, R for rook, B for

bishop, and N for knight. Describing a move uses the letter of the piece and the coordinates of

its destination. A pair of these moves describes what happens in a single turn (with white

going first); for instance, the notation 2. Nf3 Nc6 indicates that white moved a knight to f3

and black moved a knight to c6 on the second turn of the game.

There’s a bit more to algebraic notation than this, but the point is that you can

unambiguously describe a game of chess without needing to be in front of a chessboard. Your

opponent can even be on the other side of the world! In fact, you don’t even need a physical

chess set if you have a good memory: you can just read the mailed chess moves and update

boards you have in your imagination.

https://automatetheboringstuff.com/2e/chapter5/#calibre_link-1128

ADUP/18CS55 Module2

Dept. of CSE

Computers have good memories. A program on a modern computer can easily store

billions of strings like '2. Nf3 Nc6'. This is how computers can play chess without having a

physical chessboard. They model data to represent a chessboard, and you can write code to

work with this model.

This is where lists and dictionaries can come in. For example, the dictionary {'1h': 'bking',

'6c': 'wqueen', '2g': 'bbishop', '5h': 'bqueen', '3e': 'wking'} could represent the chess board

in Figure 5-2.

Figure 5-2: A chess board modeled by the dictionary '1h': 'bking', '6c': 'wqueen', '2g':

'bbishop', '5h': 'bqueen', '3e': 'wking'}

But for another example, you’ll use a game that’s a little simpler than chess: tic-tac-toe.

A Tic-Tac-Toe Board

A tic-tac-toe board looks like a large hash symbol (#) with nine slots that can each contain

an X, an O, or a blank. To represent the board with a dictionary, you can assign each slot a

string-value key, as shown in Figure 5-3.

https://automatetheboringstuff.com/2e/chapter5/#calibre_link-1129
https://automatetheboringstuff.com/2e/chapter5/#calibre_link-1130

ADUP/18CS55 Module2

Dept. of CSE

Figure 5-3: The slots of a tic-tac-toe board with their corresponding keys

You can use string values to represent what’s in each slot on the board: 'X', 'O', or ' ' (a

space). Thus, you’ll need to store nine strings. You can use a dictionary of values for this.

The string value with the key 'top-R' can represent the top-right corner, the string value with

the key 'low-L' can represent the bottom-left corner, the string value with the key 'mid-M' can

represent the middle, and so on.

This dictionary is a data structure that represents a tic-tac-toe board. Store this board-as-a-

dictionary in a variable named theBoard. Open a new file editor window, and enter the

following source code, saving it as ticTacToe.py:

theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ',

'mid-L': ' ', 'mid-M': ' ', 'mid-R': ' ',

'low-L': ' ', 'low-M': ' ', 'low-R': ' '}

The data structure stored in the theBoard variable represents the tic-tac-toe board in Figure

5-4.

Figure 5-4: An empty tic-tac-toe board

https://automatetheboringstuff.com/2e/chapter5/#calibre_link-1131
https://automatetheboringstuff.com/2e/chapter5/#calibre_link-1131

ADUP/18CS55 Module2

Dept. of CSE

Since the value for every key in theBoard is a single-space string, this dictionary

represents a completely clear board. If player X went first and chose the middle space, you

could represent that board with this dictionary:

theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ',

'mid-L': ' ', 'mid-M': 'X', 'mid-R': ' ',

'low-L': ' ', 'low-M': ' ', 'low-R': ' '}

The data structure in theBoard now represents the tic-tac-toe board in Figure 5-5.

Figure 5-5: The first move

A board where player O has won by placing Os across the top might look like this:

theBoard = {'top-L': 'O', 'top-M': 'O', 'top-R': 'O',

'mid-L': 'X', 'mid-M': 'X', 'mid-R': ' ',

'low-L': ' ', 'low-M': ' ', 'low-R': 'X'}

The data structure in theBoard now represents the tic-tac-toe board in Figure 5-6.

Figure 5-6: Player O wins.

https://automatetheboringstuff.com/2e/chapter5/#calibre_link-1132
https://automatetheboringstuff.com/2e/chapter5/#calibre_link-1133

ADUP/18CS55 Module2

Dept. of CSE

Of course, the player sees only what is printed to the screen, not the contents of variables.

Let’s create a function to print the board dictionary onto the screen. Make the following

addition to ticTacToe.py (new code is in bold):

theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ',

'mid-L': ' ', 'mid-M': ' ', 'mid-R': ' ',

'low-L': ' ', 'low-M': ' ', 'low-R': ' '}

def printBoard(board):

print(board['top-L'] + '|' + board['top-M'] + '|' + board['top-R'])

print('-+-+-')

print(board['mid-L'] + '|' + board['mid-M'] + '|' + board['mid-R'])

print('-+-+-')

print(board['low-L'] + '|' + board['low-M'] + '|' + board['low-R'])

printBoard(theBoard)

You can view the execution of this program at https://autbor.com/tictactoe1/. When you

run this program, printBoard() will print out a blank tic-tac-toe board.

| |

-+-+-

| |

-+-+-

| |

The printBoard() function can handle any tic-tac-toe data structure you pass it. Try

changing the code to the following:

theBoard = {'top-L': 'O', 'top-M': 'O', 'top-R': 'O', 'mid-L': 'X', 'mid-M':

'X', 'mid-R': ' ', 'low-L': ' ', 'low-M': ' ', 'low-R': 'X'}

def printBoard(board):

print(board['top-L'] + '|' + board['top-M'] + '|' + board['top-R'])

print('-+-+-')

print(board['mid-L'] + '|' + board['mid-M'] + '|' + board['mid-R'])

print('-+-+-')

print(board['low-L'] + '|' + board['low-M'] + '|' + board['low-R'])

printBoard(theBoard)

You can view the execution of this program at https://autbor.com/tictactoe2/. Now when

you run this program, the new board will be printed to the screen.

O|O|O

-+-+-
X|X|

-+-+-

| |X

https://autbor.com/tictactoe1/
https://autbor.com/tictactoe2/

ADUP/18CS55 Module2

Dept. of CSE

Because you created a data structure to represent a tic-tac-toe board and wrote code

in printBoard() to interpret that data structure, you now have a program that ―models‖ the tic-

tac-toe board. You could have organized your data structure differently (for example, using

keys like 'TOP-LEFT' instead of 'top-L'), but as long as the code works with your data

structures, you will have a correctly working program.

For example, the printBoard() function expects the tic-tac-toe data structure to be a

dictionary with keys for all nine slots. If the dictionary you passed was missing, say, the 'mid-

L' key, your program would no longer work.

O|O|O

-+-+-

Traceback (most recent call last):

File "ticTacToe.py", line 10, in <module>

printBoard(theBoard)

File "ticTacToe.py", line 6, in printBoard

print(board['mid-L'] + '|' + board['mid-M'] + '|' + board['mid-R'])

KeyError: 'mid-L'

Now let’s add code that allows the players to enter their moves. Modify

the ticTacToe.py program to look like this:

theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ', 'mid-L': ' ', 'mid-M':

' ', 'mid-R': ' ', 'low-L': ' ', 'low-M': ' ', 'low-R': ' '}

def printBoard(board):

print(board['top-L'] + '|' + board['top-M'] + '|' + board['top-R'])

print('-+-+-')

print(board['mid-L'] + '|' + board['mid-M'] + '|' + board['mid-R'])

print('-+-+-')

print(board['low-L'] + '|' + board['low-M'] + '|' + board['low-R'])

turn = 'X'

for i in range(9):

➊ printBoard(theBoard)

print('Turn for ' + turn + '. Move on which space?')

➋ move = input()

➌ theBoard[move] = turn

➍ if turn == 'X':

turn = 'O'

else:

turn = 'X'

printBoard(theBoard)

You can view the execution of this program at https://autbor.com/tictactoe3/. The new

code prints out the board at the start of each new turn ➊, gets the active player’s move ➋,

updates the game board accordingly ➌, and then swaps the active player ➍ before moving

on to the next turn.

When you run this program, it will look something like this:

https://autbor.com/tictactoe3/

ADUP/18CS55 Module2

Dept. of CSE

| |

-+-+-

| |

-+-+-

| |

Turn for X. Move on which space?

mid-M

| |
-+-+-

|X|

-+-+-

| |

--snip--

O|O|X

-+-+-

X|X|O

-+-+-

O| |X

Turn for X. Move on which space?

low-M

O|O|X
-+-+-

X|X|O

-+-+-

O|X|X

This isn’t a complete tic-tac-toe game—for instance, it doesn’t ever check whether a

player has won—but it’s enough to see how data structures can be used in programs.

NOTE

If you are curious, the source code for a complete tic-tac-toe program is described in the

resources available from https://nostarch.com/automatestuff2/.

Nested Dictionaries and Lists

Modeling a tic-tac-toe board was fairly simple: the board needed only a single dictionary

value with nine key-value pairs. As you model more complicated things, you may find you

need dictionaries and lists that contain other dictionaries and lists. Lists are useful to contain

an ordered series of values, and dictionaries are useful for associating keys with values. For

example, here’s a program that uses a dictionary that contains other dictionaries of what

items guests are bringing to a picnic. The totalBrought() function can read this data structure

and calculate the total number of an item being brought by all the guests.

allGuests = {'Alice': {'apples': 5, 'pretzels': 12},

'Bob': {'ham sandwiches': 3, 'apples': 2},

'Carol': {'cups': 3, 'apple pies': 1}}

def totalBrought(guests, item):

https://nostarch.com/automatestuff2/

ADUP/18CS55 Module2

Dept. of CSE

numBrought = 0

➊ for k, v in guests.items():

➋ numBrought = numBrought + v.get(item, 0)

return numBrought

print('Number of things being brought:')

print(' - Apples ' + str(totalBrought(allGuests, 'apples')))

print(' - Cups ' + str(totalBrought(allGuests, 'cups')))

print(' - Cakes ' + str(totalBrought(allGuests, 'cakes')))

print(' - Ham Sandwiches ' + str(totalBrought(allGuests, 'ham sandwiches')))

print(' - Apple Pies ' + str(totalBrought(allGuests, 'apple pies')))

You can view the execution of this program at https://autbor.com/guestpicnic/. Inside

the totalBrought() function, the for loop iterates over the key-value pairs in guests ➊. Inside

the loop, the string of the guest’s name is assigned to k, and the dictionary of picnic items

they’re bringing is assigned to v. If the item parameter exists as a key in this dictionary, its

value (the quantity) is added to numBrought ➋. If it does not exist as a key, the get() method

returns 0 to be added to numBrought.

The output of this program looks like this:

Number of things being brought:

- Apples 7

- Cups 3

- Cakes 0

- Ham Sandwiches 3

- Apple Pies 1

This may seem like such a simple thing to model that you wouldn’t need to bother with

writing a program to do it. But realize that this same totalBrought() function could easily

handle a dictionary that contains thousands of guests, each bringing thousands of different

picnic items. Then having this information in a data structure along with

the totalBrought() function would save you a lot of time!

You can model things with data structures in whatever way you like, as long as the rest of

the code in your program can work with the data model correctly. When you first begin

programming, don’t worry so much about the ―right‖ way to model data. As you gain more

experience, you may come up with more efficient models, but the important thing is that the

data model works for your program’s needs.

SUMMARY

You learned all about dictionaries in this chapter. Lists and dictionaries are values that can

contain multiple values, including other lists and dictionaries. Dictionaries are useful because

you can map one item (the key) to another (the value), as opposed to lists, which simply

contain a series of values in order. Values inside a dictionary are accessed using square

brackets just as with lists. Instead of an integer index, dictionaries can have keys of a variety

of data types: integers, floats, strings, or tuples. By organizing a program’s values into data

structures, you can create representations of real-world objects. You saw an example of this

with a tic-tac-toe board.

https://autbor.com/guestpicnic/

ADUP/18CS55 Module2

Dept. of CSE

PRACTICE QUESTIONS

1. What does the code for an empty dictionary look like?

2. What does a dictionary value with a key 'foo' and a value 42 look like?

3. What is the main difference between a dictionary and a list?

4. What happens if you try to access spam['foo'] if spam is {'bar': 100}?

5. If a dictionary is stored in spam, what is the difference between the expressions 'cat' in

spam and 'cat' in spam.keys()?

6. If a dictionary is stored in spam, what is the difference between the expressions 'cat' in

spam and 'cat' in spam.values()?

7. What is a shortcut for the following code?

if 'color' not in spam:

spam['color'] = 'black'

8. What module and function can be used to ―pretty print‖ dictionary values?

PRACTICE PROJECTS

For practice, write programs to do the following tasks.

Chess Dictionary Validator

In this chapter, we used the dictionary value {'1h': 'bking', '6c': 'wqueen', '2g': 'bbishop', '5h':

'bqueen', '3e': 'wking'} to represent a chess board. Write a function

named isValidChessBoard() that takes a dictionary argument and

returns True or False depending on if the board is valid.

A valid board will have exactly one black king and exactly one white king. Each player

can only have at most 16 pieces, at most 8 pawns, and all pieces must be on a valid space

from '1a' to '8h'; that is, a piece can’t be on space '9z'. The piece names begin with either

a 'w' or 'b' to represent white or black, followed by 'pawn', 'knight', 'bishop', 'rook', 'queen',

or 'king'. This function should detect when a bug has resulted in an improper chess board.

Fantasy Game Inventory

You are creating a fantasy video game. The data structure to model the player’s inventory

will be a dictionary where the keys are string values describing the item in the inventory and

the value is an integer value detailing how many of that item the player has. For example, the

dictionary value {'rope': 1, 'torch': 6, 'gold coin': 42, 'dagger': 1, 'arrow': 12} means the player

has 1 rope, 6 torches, 42 gold coins, and so on.

Write a function named displayInventory() that would take any possible ―inventory‖ and

display it like the following:

Inventory:

12 arrow

42 gold coin
1 rope

6 torch

ADUP/18CS55 Module2

Dept. of CSE

1 dagger

Total number of items: 62

Hint: You can use a for loop to loop through all the keys in a dictionary.

inventory.py

stuff = {'rope': 1, 'torch': 6, 'gold coin': 42, 'dagger': 1, 'arrow': 12}

def displayInventory(inventory):

print("Inventory:")

item_total = 0

for k, v in inventory.items():

FILL THIS PART IN

print("Total number of items: " + str(item_total))

displayInventory(stuff)

List to Dictionary Function for Fantasy Game Inventory

Imagine that a vanquished dragon’s loot is represented as a list of strings like this:

dragonLoot = ['gold coin', 'dagger', 'gold coin', 'gold coin', 'ruby']

Write a function named addToInventory(inventory, addedItems), where

the inventory parameter is a dictionary representing the player’s inventory (like in the

previous project) and the addedItems parameter is a list like dragonLoot.

The addToInventory() function should return a dictionary that represents the updated

inventory. Note that the addedItems list can contain multiples of the same item. Your code

could look something like this:

def addToInventory(inventory, addedItems):

your code goes here

inv = {'gold coin': 42, 'rope': 1}

dragonLoot = ['gold coin', 'dagger', 'gold coin', 'gold coin', 'ruby']

inv = addToInventory(inv, dragonLoot)

displayInventory(inv)

The previous program (with your displayInventory() function from the previous project)

would output the following:

Inventory:

45 gold coin

1 rope

1 ruby

1 dagger

Total number of items: 48

ADUP/18CS55 Module2

Dept. of CSE

ADUP/18CS55 Module3

Dept. of CSE

PATTERN MATCHING WITH REGULAR EXPRESSIONS

They allow you to specify a pattern of text to search for. You may not know a business’s

exact phone number, but if you live in the United States or Canada, you know it will be three

digits, followed by a hyphen, and then four more digits (and optionally, a three-digit area

code at the start). This is how you, as a human, know a phone number when you see it: 415-

555-1234 is a phone number, but 4,155,551,234 is not.

We also recognize all sorts of other text patterns every day: email addresses have @

symbols in the middle, US social security numbers have nine digits and two hyphens, website

URLs often have periods and forward slashes, news headlines use title case, social media

hashtags begin with # and contain no spaces, and more.

Regular expressions are helpful, but few non-programmers know about them even though

most modern text editors and word processors, such as Microsoft Word or OpenOffice, have

find and find-and-replace features that can search based on regular expressions. Regular

expressions are huge time-savers, not just for software users but also for programmers. In

fact, tech writer Cory Doctorow argues that we should be teaching regular expressions even

before programming:

Knowing [regular expressions] can mean the difference between solving a

problem in 3 steps and solving it in 3,000 steps. When you’re a nerd, you forget

that the problems you solve with a couple keystrokes can take other people days

of tedious, error-prone work to slog through.1

In this chapter, you’ll start by writing a program to find text patterns without using regular

expressions and then see how to use regular expressions to make the code much less bloated.

I’ll show you basic matching with regular expressions and then move on to some more

powerful features, such as string substitution and creating your own character classes.

Finally, at the end of the chapter, you’ll write a program that can automatically extract phone

numbers and email addresses from a block of text.

FINDING PATTERNS OF TEXT WITHOUT REGULAR EXPRESSIONS

Say you want to find an American phone number in a string. You know the pattern if you’re

American: three numbers, a hyphen, three numbers, a hyphen, and four numbers. Here’s an

example: 415-555-4242.

Let’s use a function named isPhoneNumber() to check whether a string matches this

pattern, returning either True or False. Open a new file editor tab and enter the following

code; then save the file as isPhoneNumber.py:

def isPhoneNumber(text):

➊ if len(text) != 12:

return False

for i in range(0, 3):

➋ if not text[i].isdecimal():

return False

➌ if text[3] != '-':

return False

for i in range(4, 7):

https://automatetheboringstuff.com/2e/chapter7/#calibre_link-1143

ADUP/18CS55 Module3

Dept. of CSE

➍ if not text[i].isdecimal():

return False

➎ if text[7] != '-':

return False

for i in range(8, 12):

➏ if not text[i].isdecimal():

return False

➐ return True

print('Is 415-555-4242 a phone number?')

print(isPhoneNumber('415-555-4242'))

print('Is Moshi moshi a phone number?')

print(isPhoneNumber('Moshi moshi'))

When this program is run, the output looks like this:

Is 415-555-4242 a phone number?

True

Is Moshi moshi a phone number?

False

The isPhoneNumber() function has code that does several checks to see whether the string

in text is a valid phone number. If any of these checks fail, the function returns False. First

the code checks that the string is exactly 12 characters ➊. Then it checks that the area code

(that is, the first three characters in text) consists of only numeric characters ➋. The rest of

the function checks that the string follows the pattern of a phone number: the number must

have the first hyphen after the area code ➌, three more numeric characters ➍, then another

hyphen ➎, and finally four more numbers ➏. If the program execution manages to get past

all the checks, it returns True ➐.

Calling isPhoneNumber() with the argument '415-555-4242' will return True.

Calling isPhoneNumber() with 'Moshi moshi' will return False; the first test fails

because 'Moshi moshi' is not 12 characters long.

If you wanted to find a phone number within a larger string, you would have to add even

more code to find the phone number pattern. Replace the last four print() function calls

in isPhoneNumber.py with the following:

message = 'Call me at 415-555-1011 tomorrow. 415-555-9999 is my office.'
for i in range(len(message)):

➊ chunk = message[i:i+12]

➋ if isPhoneNumber(chunk):

print('Phone number found: ' + chunk)

print('Done')

When this program is run, the output will look like this:

ADUP/18CS55 Module3

Dept. of CSE

Phone number found: 415-555-1011

Phone number found: 415-555-9999

Done

On each iteration of the for loop, a new chunk of 12 characters from message is assigned

to the variable chunk ➊. For example, on the first iteration, i is 0, and chunk is

assigned message [0:12] (that is, the string 'Call me at 4'). On the next iteration, i is 1,

and chunk is assigned message[1:13] (the string 'all me at 41'). In other words, on each

iteration of the for loop, chunk takes on the following values:

 'Call me at 4'

 'all me at 41'

 'll me at 415'

 'l me at 415-'

 . . . and so on.

You pass chunk to isPhoneNumber() to see whether it matches the phone number

pattern ➋, and if so, you print the chunk.

Continue to loop through message, and eventually the 12 characters in chunk will be a

phone number. The loop goes through the entire string, testing each 12-character piece and

printing any chunk it finds that satisfies isPhoneNumber(). Once we’re done going

through message, we print Done.

While the string in message is short in this example, it could be millions of characters long

and the program would still run in less than a second. A similar program that finds phone

numbers using regular expressions would also run in less than a second, but regular

expressions make it quicker to write these programs.

FINDING PATTERNS OF TEXT WITH REGULAR EXPRESSIONS

The previous phone number–finding program works, but it uses a lot of code to do something

limited: the isPhoneNumber() function is 17 lines but can find only one pattern of phone

numbers. What about a phone number formatted like 415.555.4242 or (415) 555-4242? What

if the phone number had an extension, like 415-555-4242 x99?.

The isPhoneNumber() function would fail to validate them. You could add yet more code for

these additional patterns, but there is an easier way.

Regular expressions, called regexes for short, are descriptions for a pattern of text. For

example, a \d in a regex stands for a digit character—that is, any single numeral from 0 to 9.

The regex \d\d\d-\d\d\d-\d\d\d\d is used by Python to match the same text pattern the

previous isPhoneNumber() function did: a string of three numbers, a hyphen, three more

numbers, another hyphen, and four numbers. Any other string would not match the \d\d\d-

\d\d\d-\d\d\d\d regex.

But regular expressions can be much more sophisticated. For example, adding a 3 in

braces ({3}) after a pattern is like saying, ―Match this pattern three times.‖ So the slightly

shorter regex \d{3}-\d{3}-\d{4} also matches the correct phone number format.

Creating Regex Objects

All the regex functions in Python are in the re module. Enter the following into the interactive

shell to import this module:

ADUP/18CS55 Module3

Dept. of CSE

>>> import re

NOTE

Most of the examples in this chapter will require the re module, so remember to import it

at the beginning of any script you write or any time you restart Mu. Otherwise, you’ll get

a NameError: name 're' is not defined error message.

Passing a string value representing your regular expression to re.compile() returns

a Regex pattern object (or simply, a Regex object).

To create a Regex object that matches the phone number pattern, enter the following into

the interactive shell. (Remember that \d means ―a digit character‖ and \d\d\d-\d\d\d-\d\d\d\d is

the regular expression for a phone number pattern.)

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')

Now the phoneNumRegex variable contains a Regex object.

Matching Regex Objects

A Regex object’s search() method searches the string it is passed for any matches to the

regex. The search() method will return None if the regex pattern is not found in the string. If

the pattern is found, the search() method returns a Match object, which have

a group() method that will return the actual matched text from the searched string. (I’ll

explain groups shortly.) For example, enter the following into the interactive shell:

>>> phoneNumRegex=re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')

>>> mo=phoneNumRegex.search('My number is 415-555-4242.')

>>> print('Phone number found:'+mo.group())

Phone number found: 415-555-4242

The mo variable name is just a generic name to use for Match objects. This example might

seem complicated at first, but it is much shorter than the earlier isPhoneNumber.py program

and does the same thing.

Here, we pass our desired pattern to re.compile() and store the resulting Regex object

in phoneNumRegex. Then we call search() on phoneNumRegex and pass search() the string

we want to match for during the search. The result of the search gets stored in the

variable mo. In this example, we know that our pattern will be found in the string, so we

know that a Match object will be returned. Knowing that mo contains a Match object and not

the null value None, we can call group() on mo to return the match.

Writing mo.group() inside our print() function call displays the whole match, 415-555-4242.

Review of Regular Expression Matching

While there are several steps to use regular expressions in Python, each step is fairly simple.

1. Import the regex module with import re.

2. Create a Regex object with the re.compile() function. (Remember to use a raw string.)

3. Pass the string you want to search into the Regex object’s search() method. This returns

a Match object.

4. Call the Match object’s group() method to return a string of the actual matched text.

ADUP/18CS55 Module3

Dept. of CSE

NOTE

While I encourage you to enter the example code into the interactive shell, you should

also make use of web-based regular expression testers, which can show you exactly how

a regex matches a piece of text that you enter. I recommend the tester

at https://pythex.org/.

MORE PATTERN MATCHING WITH REGULAR EXPRESSIONS

Now that you know the basic steps for creating and finding regular expression objects using

Python, you’re ready to try some of their more powerful pattern-matching capabilities.

Grouping with Parentheses

Say you want to separate the area code from the rest of the phone number. Adding

parentheses will create groups in the regex: (\d\d\d)-(\d\d\d-\d\d\d\d). Then you can use

the group() match object method to grab the matching text from just one group.

The first set of parentheses in a regex string will be group 1. The second set will be

group 2. By passing the integer 1 or 2 to the group() match object method, you can grab

different parts of the matched text. Passing 0 or nothing to the group() method will return the

entire matched text. Enter the following into the interactive shell:

>>> phoneNumRegex = re.compile(r'(\d\d\d)-(\d\d\d-\d\d\d\d)')

>>> mo = phoneNumRegex.search('My number is 415-555-4242.')

>>> mo.group(1)

'415'

>>> mo.group(2)

'555-4242'

>>> mo.group(0)

'415-555-4242'

>>> mo.group()

'415-555-4242'

If you would like to retrieve all the groups at once, use the groups() method—note the

plural form for the name.

>>> mo.groups()

('415', '555-4242')
>>> areaCode, mainNumber = mo.groups()

>>> print(areaCode)

415

>>> print(mainNumber)

555-4242

Since mo.groups() returns a tuple of multiple values, you can use the multiple-assignment

trick to assign each value to a separate variable, as in the previous areaCode, mainNumber =

mo.groups() line.

Parentheses have a special meaning in regular expressions, but what do you do if you need

to match a parenthesis in your text? For instance, maybe the phone numbers you are trying to

match have the area code set in parentheses. In this case, you need to escape

the (and) characters with a backslash. Enter the following into the interactive shell:

https://pythex.org/

ADUP/18CS55 Module3

Dept. of CSE

>>> phoneNumRegex = re.compile(r'(\(\d\d\d\)) (\d\d\d-\d\d\d\d)')

>>> mo = phoneNumRegex.search('My phone number is (415) 555-4242.')

>>> mo.group(1)

'(415)'

>>> mo.group(2)

'555-4242'

The \(and \) escape characters in the raw string passed to re.compile() will match actual

parenthesis characters. In regular expressions, the following characters have special

meanings:

. ^ $ * + ? { } [] \ | ()

If you want to detect these characters as part of your text pattern, you need to escape them

with a backslash:

\. \^ \$ * \+ \? \{ \} \[\] \\ \| \(\)

Make sure to double-check that you haven’t mistaken escaped parentheses \(and \) for

parentheses (and) in a regular expression. If you receive an error message about ―missing)‖

or ―unbalanced parenthesis,‖ you may have forgotten to include the closing unescaped

parenthesis for a group, like in this example:

>>> re.compile(r'(\(Parentheses\)')

Traceback (most recent call last):
--snip--

re.error: missing), unterminated subpattern at position 0

The error message tells you that there is an opening parenthesis at index 0 of

the r'(\(Parentheses\)' string that is missing its corresponding closing parenthesis.

Matching Multiple Groups with the Pipe

The | character is called a pipe. You can use it anywhere you want to match one of many

expressions. For example, the regular expression r'Batman|Tina Fey' will match

either 'Batman' or 'Tina Fey'.

When both Batman and Tina Fey occur in the searched string, the first occurrence of

matching text will be returned as the Match object. Enter the following into the interactive

shell:

>>> heroRegex = re.compile (r'Batman|Tina Fey')

>>> mo1 = heroRegex.search('Batman and Tina Fey')

>>> mo1.group()

'Batman'

>>> mo2 = heroRegex.search('Tina Fey and Batman')

>>> mo2.group()

'Tina Fey'

ADUP/18CS55 Module3

Dept. of CSE

NOTE

You can find all matching occurrences with the findall() method that’s discussed in “The

findall() Method”

You can also use the pipe to match one of several patterns as part of your regex. For

example, say you wanted to match any of the strings 'Batman', 'Batmobile', 'Batcopter',

and 'Batbat'. Since all these strings start with Bat, it would be nice if you could specify that

prefix only once. This can be done with parentheses. Enter the following into the interactive

shell:

>>> batRegex = re.compile(r'Bat(man|mobile|copter|bat)')

>>> mo = batRegex.search('Batmobile lost a wheel')

>>> mo.group()

'Batmobile'

>>> mo.group(1)

'mobile'

The method call mo.group() returns the full matched text 'Batmobile',

while mo.group(1) returns just the part of the matched text inside the first parentheses

group, 'mobile'. By using the pipe character and grouping parentheses, you can specify

several alternative patterns you would like your regex to match.

If you need to match an actual pipe character, escape it with a backslash, like \|.

Optional Matching with the Question Mark

Sometimes there is a pattern that you want to match only optionally. That is, the regex should

find a match regardless of whether that bit of text is there. The ? character flags the group that

precedes it as an optional part of the pattern. For example, enter the following into the

interactive shell:

>>> batRegex = re.compile(r'Bat(wo)?man')

>>> mo1 = batRegex.search('The Adventures of Batman')

>>> mo1.group()

'Batman'

>>> mo2 = batRegex.search('The Adventures of Batwoman')

>>> mo2.group()

'Batwoman'

The (wo)? part of the regular expression means that the pattern wo is an optional group.

The regex will match text that has zero instances or one instance of wo in it. This is why the

regex matches both 'Batwoman' and 'Batman'.

Using the earlier phone number example, you can make the regex look for phone numbers

that do or do not have an area code. Enter the following into the interactive shell:

>>> phoneRegex = re.compile(r'(\d\d\d-)?\d\d\d-\d\d\d\d')

>>> mo1 = phoneRegex.search('My number is 415-555-4242')

>>> mo1.group()

'415-555-4242'

https://automatetheboringstuff.com/2e/chapter7/#calibre_link-252
https://automatetheboringstuff.com/2e/chapter7/#calibre_link-252

ADUP/18CS55 Module3

Dept. of CSE

>>> mo2 = phoneRegex.search('My number is 555-4242')

>>> mo2.group()

'555-4242'

You can think of the ? as saying, ―Match zero or one of the group preceding this question

mark.‖

If you need to match an actual question mark character, escape it with \?.

Matching Zero or More with the Star

The * (called the star or asterisk) means ―match zero or more‖—the group that precedes the

star can occur any number of times in the text. It can be completely absent or repeated over

and over again. Let’s look at the Batman example again.

>>> batRegex = re.compile(r'Bat(wo)*man')

>>> mo1 = batRegex.search('The Adventures of Batman')

>>> mo1.group()

'Batman'

>>> mo2 = batRegex.search('The Adventures of Batwoman')

>>> mo2.group()

'Batwoman'

>>> mo3 = batRegex.search('The Adventures of Batwowowowoman')

>>> mo3.group()

'Batwowowowoman'

For 'Batman', the (wo)* part of the regex matches zero instances of wo in the string;

for 'Batwoman', the (wo)* matches one instance of wo; and

for 'Batwowowowoman', (wo)* matches four instances of wo.

If you need to match an actual star character, prefix the star in the regular expression with

a backslash, *.

Matching One or More with the Plus

While * means ―match zero or more,‖ the + (or plus) means ―match one or more.‖ Unlike the

star, which does not require its group to appear in the matched string, the group preceding a

plus must appear at least once. It is not optional. Enter the following into the interactive shell,

and compare it with the star regexes in the previous section:

>>> batRegex = re.compile(r'Bat(wo)+man')

>>> mo1 = batRegex.search('The Adventures of Batwoman')

>>> mo1.group()

'Batwoman'

>>> mo2 = batRegex.search('The Adventures of Batwowowowoman')

>>> mo2.group()

'Batwowowowoman'

ADUP/18CS55 Module3

Dept. of CSE

>>> mo3 = batRegex.search('The Adventures of Batman')

>>> mo3 == None

True

The regex Bat(wo)+man will not match the string 'The Adventures of Batman', because at

least one wo is required by the plus sign.

If you need to match an actual plus sign character, prefix the plus sign with a backslash to

escape it: \+.

Matching Specific Repetitions with Braces

If you have a group that you want to repeat a specific number of times, follow the group in

your regex with a number in braces. For example, the regex (Ha){3} will match the

string 'HaHaHa', but it will not match 'HaHa', since the latter has only two repeats of

the (Ha) group.

Instead of one number, you can specify a range by writing a minimum, a comma, and a

maximum in between the braces. For example, the regex (Ha){3,5} will

match 'HaHaHa', 'HaHaHaHa', and 'HaHaHaHaHa'.

You can also leave out the first or second number in the braces to leave the minimum or

maximum unbounded. For example, (Ha){3,} will match three or more instances of

the (Ha) group, while (Ha){,5} will match zero to five instances. Braces can help make your

regular expressions shorter. These two regular expressions match identical patterns:

(Ha){3}

(Ha)(Ha)(Ha)

And these two regular expressions also match identical patterns:

(Ha){3,5}

((Ha)(Ha)(Ha))|((Ha)(Ha)(Ha)(Ha))|((Ha)(Ha)(Ha)(Ha)(Ha))

Enter the following into the interactive shell:

>>> haRegex = re.compile(r'(Ha){3}')

>>> mo1 = haRegex.search('HaHaHa')

>>> mo1.group()

'HaHaHa'

>>> mo2 = haRegex.search('Ha')

>>> mo2 == None

True

Here, (Ha){3} matches 'HaHaHa' but not 'Ha'. Since it doesn’t

match 'Ha', search() returns None.

GREEDY AND NON-GREEDY MATCHING

ADUP/18CS55 Module3

Dept. of CSE

Since (Ha){3,5} can match three, four, or five instances of Ha in the string 'HaHaHaHaHa',

you may wonder why the Match object’s call to group() in the previous brace example

returns 'HaHaHaHaHa' instead of the shorter possibilities.

A fterall, 'HaHaHa' and 'HaHaHaHa' are also valid matches of the regular

expression (Ha){3,5}.

Python’s regular expressions are greedy by default, which means that in ambiguous

situations they will match the longest string possible. The non-greedy (also called lazy)

version of the braces, which matches the shortest string possible, has the closing brace

followed by a question mark.

Enter the following into the interactive shell, and notice the difference between the greedy

and non-greedy forms of the braces searching the same string:

>>> greedyHaRegex = re.compile(r'(Ha){3,5}')

>>> mo1 = greedyHaRegex.search('HaHaHaHaHa')

>>> mo1.group()

'HaHaHaHaHa'

>>> nongreedyHaRegex = re.compile(r'(Ha){3,5}?')

>>> mo2 = nongreedyHaRegex.search('HaHaHaHaHa')

>>> mo2.group()

'HaHaHa'

Note that the question mark can have two meanings in regular expressions: declaring a

non-greedy match or flagging an optional group. These meanings are entirely unrelated.

THE FINDALL() METHOD

In addition to the search() method, Regex objects also have a findall() method.

While search() will return a Match object of the first matched text in the searched string,

the findall() method will return the strings of every match in the searched string. To see

how search() returns a Match object only on the first instance of matching text, enter the

following into the interactive shell:

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')

>>> mo = phoneNumRegex.search('Cell: 415-555-9999 Work: 212-555-0000')

>>> mo.group()

'415-555-9999'

On the other hand, findall() will not return a Match object but a list of strings—as long as

there are no groups in the regular expression. Each string in the list is a piece of the searched

text that matched the regular expression. Enter the following into the interactive shell:

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d') # has no groups

>>> phoneNumRegex.findall('Cell: 415-555-9999 Work: 212-555-0000')

['415-555-9999', '212-555-0000']

If there are groups in the regular expression, then findall() will return a list of tuples. Each

tuple represents a found match, and its items are the matched strings for each group in the

ADUP/18CS55 Module3

Dept. of CSE

regex. To see findall() in action, enter the following into the interactive shell (notice that the

regular expression being compiled now has groups in parentheses):

>>> phoneNumRegex = re.compile(r'(\d\d\d)-(\d\d\d)-(\d\d\d\d)') # has groups

>>> phoneNumRegex.findall('Cell: 415-555-9999 Work: 212-555-0000')

[('415', '555', '9999'), ('212', '555', '0000')]

To summarize what the findall() method returns, remember the following:

 When called on a regex with no groups, such as \d\d\d-\d\d\d-\d\d\d\d, the

method findall() returns a list of string matches, such as ['415-555-9999', '212-555-0000'].

 When called on a regex that has groups, such as (\d\d\d)-(\d\d\d)-(\d\d\d\d), the

method findall() returns a list of tuples of strings (one string for each group), such as [('415',

'555', '9999'), ('212', '555', '0000')].

CHARACTER CLASSES

In the earlier phone number regex example, you learned that \d could stand for any numeric

digit. That is, \d is shorthand for the regular expression (0|1|2|3|4|5|6|7|8|9). There are many

such shorthand character classes, as shown in Table 7-1.

Table 7-1: Shorthand Codes for Common Character Classes

Shorthand character

class

Represents

\d Any numeric digit from 0 to 9.

\D Any character that is not a numeric digit from 0 to 9.

\w Any letter, numeric digit, or the underscore character. (Think of this as

matching ―word‖ characters.)

\W Any character that is not a letter, numeric digit, or the underscore

character.

\s Any space, tab, or newline character. (Think of this as matching

―space‖ characters.)

\S Any character that is not a space, tab, or newline.

Character classes are nice for shortening regular expressions. The character class [0-

5] will match only the numbers 0 to 5; this is much shorter than typing (0|1|2|3|4|5). Note that

while \d matches digits and \w matches digits, letters, and the underscore, there is no

shorthand character class that matches only letters. (Though you can use the [a-zA-

Z] character class, as explained next.)

For example, enter the following into the interactive shell:

>>> xmasRegex = re.compile(r'\d+\s\w+')

>>> xmasRegex.findall('12 drummers, 11 pipers, 10 lords, 9 ladies, 8 maids, 7

swans, 6 geese, 5 rings, 4 birds, 3 hens, 2 doves, 1 partridge')

['12 drummers', '11 pipers', '10 lords', '9 ladies', '8 maids', '7 swans', '6

geese', '5 rings', '4 birds', '3 hens', '2 doves', '1 partridge']

https://automatetheboringstuff.com/2e/chapter7/#calibre_link-1144

ADUP/18CS55 Module3

Dept. of CSE

The regular expression \d+\s\w+ will match text that has one or more numeric digits (\d+),

followed by a whitespace character (\s), followed by one or more letter/digit/underscore

characters (\w+). The findall() method returns all matching strings of the regex pattern in a

list.

MAKING YOUR OWN CHARACTER CLASSES

There are times when you want to match a set of characters but the shorthand character

classes (\d, \w, \s, and so on) are too broad. You can define your own character class using

square brackets. For example, the character class [aeiouAEIOU] will match any vowel, both

lowercase and uppercase. Enter the following into the interactive shell:

>>> vowelRegex = re.compile(r'[aeiouAEIOU]')

>>> vowelRegex.findall('RoboCop eats baby food. BABY FOOD.')

['o', 'o', 'o', 'e', 'a', 'a', 'o', 'o', 'A', 'O', 'O']

You can also include ranges of letters or numbers by using a hyphen. For example, the

character class [a-zA-Z0-9] will match all lowercase letters, uppercase letters, and numbers.

Note that inside the square brackets, the normal regular expression symbols are not

interpreted as such. This means you do not need to escape the ., *, ?, or () characters with a

preceding backslash. For example, the character class [0-5.] will match digits 0 to 5 and a

period. You do not need to write it as [0-5\.].

By placing a caret character (^) just after the character class’s opening bracket, you can

make a negative character class. A negative character class will match all the characters that

are not in the character class. For example, enter the following into the interactive shell:

>>> consonantRegex = re.compile(r'[^aeiouAEIOU]')

>>> consonantRegex.findall('RoboCop eats baby food. BABY FOOD.')

['R', 'b', 'C', 'p', ' ', 't', 's', ' ', 'b', 'b', 'y', ' ', 'f', 'd', '.', '

', 'B', 'B', 'Y', ' ', 'F', 'D', '.']

Now, instead of matching every vowel, we’re matching every character that isn’t a vowel.

THE CARET AND DOLLAR SIGN CHARACTERS

You can also use the caret symbol (^) at the start of a regex to indicate that a match must

occur at the beginning of the searched text. Likewise, you can put a dollar sign ($) at the end

of the regex to indicate the string must end with this regex pattern. And you can use

the ^ and $ together to indicate that the entire string must match the regex—that is, it’s not

enough for a match to be made on some subset of the string.

For example, the r'^Hello' regular expression string matches strings that begin with 'Hello'.

Enter the following into the interactive shell:

>>> beginsWithHello = re.compile(r'^Hello')

>>> beginsWithHello.search('Hello, world!')

<re.Match object; span=(0, 5), match='Hello'>

>>> beginsWithHello.search('He said hello.') == None

True

ADUP/18CS55 Module3

Dept. of CSE

The r'\d$' regular expression string matches strings that end with a numeric character from

0 to 9. Enter the following into the interactive shell:

>>> endsWithNumber = re.compile(r'\d$')

>>> endsWithNumber.search('Your number is 42')

<re.Match object; span=(16, 17), match='2'>

>>> endsWithNumber.search('Your number is forty two.') == None

True

The r'^\d+$' regular expression string matches strings that both begin and end with one or

more numeric characters. Enter the following into the interactive shell:

>>> wholeStringIsNum = re.compile(r'^\d+$')

>>> wholeStringIsNum.search('1234567890')

<re.Match object; span=(0, 10), match='1234567890'>

>>> wholeStringIsNum.search('12345xyz67890') == None

True

>>> wholeStringIsNum.search('12 34567890') == None

True

The last two search() calls in the previous interactive shell example demonstrate how the

entire string must match the regex if ^ and $ are used.

I always confuse the meanings of these two symbols, so I use the mnemonic ―Carrots cost

dollars‖ to remind myself that the caret comes first and the dollar sign comes last.

THE WILDCARD CHARACTER

The . (or dot) character in a regular expression is called a wildcard and will match any

character except for a newline. For example, enter the following into the interactive shell:

>>> atRegex = re.compile(r'.at')

>>> atRegex.findall('The cat in the hat sat on the flat mat.')

['cat', 'hat', 'sat', 'lat', 'mat']

Remember that the dot character will match just one character, which is why the match for

the text flat in the previous example matched only lat. To match an actual dot, escape the dot

with a backslash: \..

Matching Everything with Dot-Star

Sometimes you will want to match everything and anything. For example, say you want to

match the string 'First Name:', followed by any and all text, followed by 'Last Name:', and

then followed by anything again. You can use the dot-star (.*) to stand in for that ―anything.‖

Remember that the dot character means ―any single character except the newline,‖ and the

star character means ―zero or more of the preceding character.‖

Enter the following into the interactive shell:

>>> nameRegex = re.compile(r'First Name: (.*) Last Name: (.*)')

>>> mo = nameRegex.search('First Name: Al Last Name: Sweigart')

ADUP/18CS55 Module3

Dept. of CSE

>>> mo.group(1)

'Al'

>>> mo.group(2)

'Sweigart'

The dot-star uses greedy mode: It will always try to match as much text as possible. To

match any and all text in a non-greedy fashion, use the dot, star, and question mark (.*?).

Like with braces, the question mark tells Python to match in a non-greedy way.

Enter the following into the interactive shell to see the difference between the greedy and

non-greedy versions:

>>> nongreedyRegex = re.compile(r'<.*?>')

>>> mo = nongreedyRegex.search('<To serve man> for dinner.>')

>>> mo.group()

'<To serve man>'

>>> greedyRegex = re.compile(r'<.*>')

>>> mo = greedyRegex.search('<To serve man> for dinner.>')

>>> mo.group()

'<To serve man> for dinner.>'

Both regexes roughly translate to ―Match an opening angle bracket, followed by anything,

followed by a closing angle bracket.‖ But the string '<To serve man> for dinner.>' has two

possible matches for the closing angle bracket. In the non-greedy version of the regex, Python

matches the shortest possible string: '<To serve man>'. In the greedy version, Python matches

the longest possible string: '<To serve man> for dinner.>'.

Matching Newlines with the Dot Character

The dot-star will match everything except a newline. By passing re.DOTALL as the second

argument to re.compile(), you can make the dot character match all characters, including the

newline character.

Enter the following into the interactive shell:

>>> noNewlineRegex = re.compile('.*')

>>> noNewlineRegex.search('Serve the public trust.\nProtect the innocent.

\nUphold the law.').group()

'Serve the public trust.'

>>> newlineRegex = re.compile('.*', re.DOTALL)

>>> newlineRegex.search('Serve the public trust.\nProtect the innocent.

\nUphold the law.').group()

'Serve the public trust.\nProtect the innocent.\nUphold the law.'

The regex noNewlineRegex, which did not have re.DOTALL passed to

the re.compile() call that created it, will match everything only up to the first newline

character, whereas newlineRegex, which did have re.DOTALL passed to re.compile(),

ADUP/18CS55 Module3

Dept. of CSE

matches everything. This is why the newlineRegex.search() call matches the full string,

including its newline characters.

REVIEW OF REGEX SYMBOLS

This chapter covered a lot of notation, so here’s a quick review of what you learned about

basic regular expression syntax:

 The ? matches zero or one of the preceding group.

 The * matches zero or more of the preceding group.

 The + matches one or more of the preceding group.

 The {n} matches exactly n of the preceding group.

 The {n,} matches n or more of the preceding group.

 The {,m} matches 0 to m of the preceding group.

 The {n,m} matches at least n and at most m of the preceding group.

 {n,m}? or *? or +? performs a non-greedy match of the preceding group.

 ^spam means the string must begin with spam.

 spam$ means the string must end with spam.

 The . matches any character, except newline characters.

 \d, \w, and \s match a digit, word, or space character, respectively.

 \D, \W, and \S match anything except a digit, word, or space character, respectively.

 [abc] matches any character between the brackets (such as a, b, or c).

 [^abc] matches any character that isn’t between the brackets.

CASE-INSENSITIVE MATCHING

Normally, regular expressions match text with the exact casing you specify. For example, the

following regexes match completely different strings:

>>> regex1 = re.compile('RoboCop')

>>> regex2 = re.compile('ROBOCOP')

>>> regex3 = re.compile('robOcop')

>>> regex4 = re.compile('RobocOp')

But sometimes you care only about matching the letters without worrying whether they’re

uppercase or lowercase. To make your regex case-insensitive, you can

pass re.IGNORECASE or re.I as a second argument to re.compile(). Enter the following into

the interactive shell:

>>> robocop = re.compile(r'robocop', re.I)

>>> robocop.search('RoboCop is part man, part machine, all cop.').group()

'RoboCop'

>>> robocop.search('ROBOCOP protects the innocent.').group()

'ROBOCOP'

>>> robocop.search('Al, why does your programming book talk about robocop so

ADUP/18CS55 Module3

Dept. of CSE

much?').group()

'robocop'

SUBSTITUTING STRINGS WITH THE SUB() METHOD

Regular expressions can not only find text patterns but can also substitute new text in place of

those patterns. The sub() method for Regex objects is passed two arguments. The first

argument is a string to replace any matches. The second is the string for the regular

expression. The sub() method returns a string with the substitutions applied.

For example, enter the following into the interactive shell:

>>> namesRegex = re.compile(r'Agent \w+')

>>> namesRegex.sub('CENSORED', 'Agent Alice gave the secret documents to Agent

Bob.')

'CENSORED gave the secret documents to CENSORED.'

Sometimes you may need to use the matched text itself as part of the substitution. In the

first argument to sub(), you can type \1, \2, \3, and so on, to mean ―Enter the text of

group 1, 2, 3, and so on, in the substitution.‖

For example, say you want to censor the names of the secret agents by showing just the

first letters of their names. To do this, you could use the regex Agent (\w)\w* and

pass r'\1****' as the first argument to sub(). The \1 in that string will be replaced by whatever

text was matched by group 1—that is, the (\w) group of the regular expression.

>>> agentNamesRegex = re.compile(r'Agent (\w)\w*')

>>> agentNamesRegex.sub(r'\1****', 'Agent Alice told Agent Carol that Agent

Eve knew Agent Bob was a double agent.')

A**** told C**** that E**** knew B**** was a double agent.'

MANAGING COMPLEX REGEXES

Regular expressions are fine if the text pattern you need to match is simple. But matching

complicated text patterns might require long, convoluted regular expressions. You can

mitigate this by telling the re.compile() function to ignore whitespace and comments inside

the regular expression string. This ―verbose mode‖ can be enabled by passing the

variable re.VERBOSE as the second argument to re.compile().

Now instead of a hard-to-read regular expression like this:

phoneRegex = re.compile(r'((\d{3}|\(\d{3}\))?(\s|-|\.)?\d{3}(\s|-|\.)\d{4}

(\s*(ext|x|ext.)\s*\d{2,5})?)')

you can spread the regular expression over multiple lines with comments like this:

phoneRegex = re.compile(r'''(

(\d{3}|\(\d{3}\))? # area code

(\s|-|\.)? # separator

\d{3} # first 3 digits

ADUP/18CS55 Module3

Dept. of CSE

(\s|-|\.) # separator

\d{4} # last 4 digits

(\s*(ext|x|ext.)\s*\d{2,5})? # extension

)''', re.VERBOSE)

Note how the previous example uses the triple-quote syntax (''') to create a multiline string

so that you can spread the regular expression definition over many lines, making it much

more legible.

The comment rules inside the regular expression string are the same as regular Python

code: the # symbol and everything after it to the end of the line are ignored. Also, the extra

spaces inside the multiline string for the regular expression are not considered part of the text

pattern to be matched. This lets you organize the regular expression so it’s easier to read.

COMBINING RE.IGNORECASE, RE.DOTALL, AND RE.VERBOSE

What if you want to use re.VERBOSE to write comments in your regular expression but also

want to use re.IGNORECASE to ignore capitalization? Unfortunately,

the re.compile() function takes only a single value as its second argument. You can get

around this limitation by combining the re.IGNORECASE, re.DOTALL,

and re.VERBOSE variables using the pipe character (|), which in this context is known as

the bitwise or operator.

So if you want a regular expression that’s case-insensitive and includes newlines to match

the dot character, you would form your re.compile() call like this:

>>> someRegexValue = re.compile('foo', re.IGNORECASE | re.DOTALL)

Including all three options in the second argument will look like this:

>>> someRegexValue = re.compile('foo', re.IGNORECASE | re.DOTALL |

re.VERBOSE)

This syntax is a little old-fashioned and originates from early versions of Python. The

details of the bitwise operators are beyond the scope of this book, but check out the resources

at https://nostarch.com/automatestuff2/ for more information. You can also pass other options

for the second argument; they’re uncommon, but you can read more about them in the

resources, too.

PROJECT: PHONE NUMBER AND EMAIL ADDRESS EXTRACTOR

Say you have the boring task of finding every phone number and email address in a long web

page or document. If you manually scroll through the page, you might end up searching for a

long time. But if you had a program that could search the text in your clipboard for phone

numbers and email addresses, you could simply press CTRL-A to select all the text,

press CTRL-C to copy it to the clipboard, and then run your program. It could replace the text

on the clipboard with just the phone numbers and email addresses it finds.

Whenever you’re tackling a new project, it can be tempting to dive right into writing code.

But more often than not, it’s best to take a step back and consider the bigger picture. I

recommend first drawing up a high-level plan for what your program needs to do. Don’t think

about the actual code yet—you can worry about that later. Right now, stick to broad strokes.

https://nostarch.com/automatestuff2/

ADUP/18CS55 Module3

Dept. of CSE

For example, your phone and email address extractor will need to do the following:

1. Get the text off the clipboard.

2. Find all phone numbers and email addresses in the text.

3. Paste them onto the clipboard.

Now you can start thinking about how this might work in code. The code will need to do

the following:

1. Use the pyperclip module to copy and paste strings.

2. Create two regexes, one for matching phone numbers and the other for matching email

addresses.

3. Find all matches, not just the first match, of both regexes.

4. Neatly format the matched strings into a single string to paste.

5. Display some kind of message if no matches were found in the text.

This list is like a road map for the project. As you write the code, you can focus on each of

these steps separately. Each step is fairly manageable and expressed in terms of things you

already know how to do in Python.

Step 1: Create a Regex for Phone Numbers

First, you have to create a regular expression to search for phone numbers. Create a new file,

enter the following, and save it as phoneAndEmail.py:

#! python3

phoneAndEmail.py - Finds phone numbers and email addresses on the clipboard.

import pyperclip, re

phoneRegex = re.compile(r'''(

(\d{3}|\(\d{3}\))? # area code

(\s|-|\.)? # separator

(\d{3}) # first 3 digits

(\s|-|\.) # separator

(\d{4}) # last 4 digits

(\s*(ext|x|ext.)\s*(\d{2,5}))? # extension

)''', re.VERBOSE)

TODO: Create email regex.

TODO: Find matches in clipboard text.

TODO: Copy results to the clipboard.

The TODO comments are just a skeleton for the program. They’ll be replaced as you

write the actual code.

The phone number begins with an optional area code, so the area code group is followed

with a question mark. Since the area code can be just three digits (that is, \d{3}) or three

digits within parentheses (that is, \(\d{3}\)), you should have a pipe joining those parts. You

can add the regex comment # Area code to this part of the multiline string to help you

remember what (\d{3}|\(\d{3}\))? is supposed to match.

ADUP/18CS55 Module3

Dept. of CSE

The phone number separator character can be a space (\s), hyphen (-), or period (.), so

these parts should also be joined by pipes. The next few parts of the regular expression are

straightforward: three digits, followed by another separator, followed by four digits. The last

part is an optional extension made up of any number of spaces followed by ext, x, or ext.,

followed by two to five digits.

NOTE

It’s easy to get mixed up with regular expressions that contain groups with parentheses (

) and escaped parentheses \(\). Remember to double-check that you’re using the correct

one if you get a “missing), unterminated subpattern” error message.

Step 2: Create a Regex for Email Addresses

You will also need a regular expression that can match email addresses. Make your program

look like the following:

#! python3

phoneAndEmail.py - Finds phone numbers and email addresses on the clipboard.

import pyperclip, re

phoneRegex = re.compile(r'''(

--snip--

Create email regex.

emailRegex = re.compile(r'''(

➊ [a-zA-Z0-9._%+-]+ # username

➋ @ # @ symbol

➌ [a-zA-Z0-9.-]+ # domain name

(\.[a-zA-Z]{2,4}) # dot-something

)''', re.VERBOSE)

TODO: Find matches in clipboard text.

TODO: Copy results to the clipboard.

The username part of the email address ➊ is one or more characters that can be any of the

following: lowercase and uppercase letters, numbers, a dot, an underscore, a percent sign, a

plus sign, or a hyphen. You can put all of these into a character class: [a-zA-Z0-9._%+-].

The domain and username are separated by an @ symbol ➋. The domain name ➌ has a

slightly less permissive character class with only letters, numbers, periods, and hyphens: [a-

zA-Z0-9.-]. And last will be the ―dot-com‖ part (technically known as the top-level domain),

which can really be dot-anything. This is between two and four characters.

The format for email addresses has a lot of weird rules. This regular expression won’t

match every possible valid email address, but it’ll match almost any typical email address

you’ll encounter.

Step 3: Find All Matches in the Clipboard Text

Now that you have specified the regular expressions for phone numbers and email addresses,

you can let Python’s re module do the hard work of finding all the matches on the clipboard.

ADUP/18CS55 Module3

Dept. of CSE

The pyperclip.paste() function will get a string value of the text on the clipboard, and

the findall() regex method will return a list of tuples.

Make your program look like the following:

#! python3

phoneAndEmail.py - Finds phone numbers and email addresses on the clipboard.

import pyperclip, re

phoneRegex = re.compile(r'''(

--snip--

Find matches in clipboard text.

text = str(pyperclip.paste())

➊ matches = []

➋ for groups in phoneRegex.findall(text):

phoneNum = '-'.join([groups[1], groups[3], groups[5]])

if groups[8] != '':

phoneNum += ' x' + groups[8]

matches.append(phoneNum)

➌ for groups in emailRegex.findall(text):

matches.append(groups[0])

TODO: Copy results to the clipboard.

There is one tuple for each match, and each tuple contains strings for each group in the

regular expression. Remember that group 0 matches the entire regular expression, so the

group at index 0 of the tuple is the one you are interested in.

As you can see at ➊, you’ll store the matches in a list variable named matches. It starts

off as an empty list, and a couple for loops. For the email addresses, you append group 0 of

each match ➌. For the matched phone numbers, you don’t want to just append group 0.

While the program detects phone numbers in several formats, you want the phone number

appended to be in a single, standard format. The phoneNum variable contains a string built

from groups 1, 3, 5, and 8 of the matched text ➋. (These groups are the area code, first three

digits, last four digits, and extension.)

Step 4: Join the Matches into a String for the Clipboard

Now that you have the email addresses and phone numbers as a list of strings in matches, you

want to put them on the clipboard. The pyperclip.copy() function takes only a single string

value, not a list of strings, so you call the join() method on matches.

To make it easier to see that the program is working, let’s print any matches you find to

the terminal. If no phone numbers or email addresses were found, the program should tell the

user this.

Make your program look like the following:

ADUP/18CS55 Module3

Dept. of CSE

#! python3

phoneAndEmail.py - Finds phone numbers and email addresses on the clipboard.

--snip--

for groups in emailRegex.findall(text):

matches.append(groups[0])

Copy results to the clipboard.

if len(matches) > 0:

pyperclip.copy('\n'.join(matches))

print('Copied to clipboard:')

print('\n'.join(matches))

else:

print('No phone numbers or email addresses found.')

Running the Program

For an example, open your web browser to the No Starch Press contact page

at https://nostarch.com/contactus/, press CTRL-A to select all the text on the page, and

press CTRL-C to copy it to the clipboard. When you run this program, the output will look

something like this:

Copied to clipboard:

800-420-7240

415-863-9900

415-863-9950

info@nostarch.com

media@nostarch.com

academic@nostarch.com

info@nostarch.com

Ideas for Similar Programs

Identifying patterns of text (and possibly substituting them with the sub() method) has many

different potential applications. For example, you could:

 Find website URLs that begin with http:// or https://.

 Clean up dates in different date formats (such as 3/14/2019, 03-14-2019, and 2015/3/19) by

replacing them with dates in a single, standard format.

 Remove sensitive information such as Social Security or credit card numbers.

 Find common typos such as multiple spaces between words, accidentally accidentally

repeated words, or multiple exclamation marks at the end of sentences. Those are annoying!!

SUMMARY

While a computer can search for text quickly, it must be told precisely what to look for.

Regular expressions allow you to specify the pattern of characters you are looking for, rather

than the exact text itself. In fact, some word processing and spreadsheet applications provide

find-and-replace features that allow you to search using regular expressions.

https://nostarch.com/contactus/
mailto:info@nostarch.com
mailto:media@nostarch.com
mailto:academic@nostarch.com
mailto:info@nostarch.com

ADUP/18CS55 Module3

Dept. of CSE

The re module that comes with Python lets you compile Regex objects. These objects

have several methods: search() to find a single match, findall() to find all matching instances,

and sub() to do a find-and-replace substitution of text.

You can find out more in the official Python documentation

at https://docs.python.org/3/library/re.html. Another useful resource is the tutorial

website https://www.regular-expressions.info/.

PRACTICE QUESTIONS

1. What is the function that creates Regex objects?

2. Why are raw strings often used when creating Regex objects?

3. What does the search() method return?

4. How do you get the actual strings that match the pattern from a Match object?

5. In the regex created from r'(\d\d\d)-(\d\d\d-\d\d\d\d)', what does group 0 cover? Group 1?

Group 2?

6. Parentheses and periods have specific meanings in regular expression syntax. How

would you specify that you want a regex to match actual parentheses and period

characters?

7. The findall() method returns a list of strings or a list of tuples of strings. What makes it

return one or the other?

8. What does the | character signify in regular expressions?

9. What two things does the ? character signify in regular expressions?

10. What is the difference between the + and * characters in regular expressions?

11. What is the difference between {3} and {3,5} in regular expressions?

12. What do the \d, \w, and \s shorthand character classes signify in regular expressions?

13. What do the \D, \W, and \S shorthand character classes signify in regular expressions?

14. What is the difference between .* and .*??

15. What is the character class syntax to match all numbers and lowercase letters?

16. How do you make a regular expression case-insensitive?

17. What does the . character normally match? What does it match if re.DOTALL is passed

as the second argument to re.compile()?

18. If numRegex = re.compile(r'\d+'), what will numRegex.sub('X', '12 drummers, 11 pipers,

five rings, 3 hens') return?

19. What does passing re.VERBOSE as the second argument to re.compile() allow you to

do?

20. How would you write a regex that matches a number with commas for every three

digits? It must match the following:

 '42'

 '1,234'

 '6,368,745'

but not the following:

https://docs.python.org/3/library/re.html
https://www.regular-expressions.info/

ADUP/18CS55 Module3

Dept. of CSE

 '12,34,567' (which has only two digits between the commas)

 '1234' (which lacks commas)

21. How would you write a regex that matches the full name of someone whose last name is

Watanabe? You can assume that the first name that comes before it will always be one

word that begins with a capital letter. The regex must match the following:

 'Haruto Watanabe'

 'Alice Watanabe'

 'RoboCop Watanabe'

but not the following:

 'haruto Watanabe' (where the first name is not capitalized)

 'Mr. Watanabe' (where the preceding word has a nonletter character)

 'Watanabe' (which has no first name)

 'Haruto watanabe' (where Watanabe is not capitalized)

22. How would you write a regex that matches a sentence where the first word is

either Alice, Bob, or Carol; the second word is either eats, pets, or throws; the third word

is apples, cats, or baseballs; and the sentence ends with a period? This regex should be

case-insensitive. It must match the following:

 'Alice eats apples.'

 'Bob pets cats.'

 'Carol throws baseballs.'

 'Alice throws Apples.'

 'BOB EATS CATS.'

but not the following:

 'RoboCop eats apples.'

 'ALICE THROWS FOOTBALLS.'

 'Carol eats 7 cats.'

PRACTICE PROJECTS

For practice, write programs to do the following tasks.

Date Detection

Write a regular expression that can detect dates in the DD/MM/YYYY format. Assume that the

days range from 01 to 31, the months range from 01 to 12, and the years range from 1000 to

2999. Note that if the day or month is a single digit, it’ll have a leading zero.

The regular expression doesn’t have to detect correct days for each month or for leap

years; it will accept nonexistent dates like 31/02/2020 or 31/04/2021. Then store these strings

into variables named month, day, and year, and write additional code that can detect if it is a

valid date. April, June, September, and November have 30 days, February has 28 days, and

the rest of the months have 31 days. February has 29 days in leap years. Leap years are every

year evenly divisible by 4, except for years evenly divisible by 100, unless the year is also

evenly divisible by 400. Note how this calculation makes it impossible to make a reasonably

sized regular expression that can detect a valid date.

Strong Password Detection

ADUP/18CS55 Module3

Dept. of CSE

Write a function that uses regular expressions to make sure the password string it is passed is

strong. A strong password is defined as one that is at least eight characters long, contains both

uppercase and lowercase characters, and has at least one digit. You may need to test the string

against multiple regex patterns to validate its strength.

Regex Version of the strip() Method

Write a function that takes a string and does the same thing as the strip() string method. If no

other arguments are passed other than the string to strip, then whitespace characters will be

removed from the beginning and end of the string. Otherwise, the characters specified in the

second argument to the function will be removed from the string.

READING AND WRITING FILES

READING AND WRITING FILES

Variables are a fine way to store data while your program is running, but if you want your

data to persist even after your program has finished, you need to save it to a file. You can

think of a file’s contents as a single string value, potentially gigabytes in size. In this chapter,

you will learn how to use Python to create, read, and save files on the hard drive.

FILES AND FILE PATHS

A file has two key properties: a filename (usually written as one word) and a path. The path

specifies the location of a file on the computer. For example, there is a file on my Windows 7

laptop with the filename project.docx in the path C:\Users\asweigart\Documents. The part of

the filename after the last period is called the file’s extension and tells you a file’s

ADUP/18CS55 Module3

Dept. of CSE

type. project.docx is a Word document, and Users, asweigart, and Documents all refer

to folders (also called directories). Folders can contain files and other folders. For

example, project.docx is in the Documents folder, which is inside the asweigart folder, which

is inside the Users folder. Figure 8-1 shows this folder organization.

Figure 8-1. A file in a hierarchy of folders

The C:\ part of the path is the root folder, which contains all other folders. On Windows, the

root folder is named C:\ and is also called the C: drive. On OS X and Linux, the root folder

is /. In this book, I’ll be using the Windows-style root folder, C:\. If you are entering the

interactive shell examples on OS X or Linux, enter / instead.

Additional volumes, such as a DVD drive or USB thumb drive, will appear differently on

different operating systems. On Windows, they appear as new, lettered root drives, such

as D:\ or E:\. On OS X, they appear as new folders under the /Volumes folder. On Linux, they

appear as new folders under the /mnt (―mount‖) folder. Also note that while folder names and

filenames are not case sensitive on Windows and OS X, they are case sensitive on Linux.

BACKSLASH ON WINDOWS AND FORWARD SLASH ON OS X AND LINUX

On Windows, paths are written using backslashes (\) as the separator between folder names.

OS X and Linux, however, use the forward slash (/) as their path separator. If you want your

programs to work on all operating systems, you will have to write your Python scripts to

handle both cases.

Fortunately, this is simple to do with the os.path.join() function. If you pass it the string

values of individual file and folder names in your path, os.path.join() will return a string with

a file path using the correct path separators. Enter the following into the interactive shell:

>>> import os

>>> os.path.join('usr', 'bin', 'spam')

'usr\\bin\\spam'

https://automatetheboringstuff.com/chapter8/#calibre_link-82

ADUP/18CS55 Module3

Dept. of CSE

I’m running these interactive shell examples on Windows, so os.path.join('usr', 'bin',

'spam') returned 'usr\\bin\\spam'. (Notice that the backslashes are doubled because each

backslash needs to be escaped by another backslash character.) If I had called this function on

OS X or Linux, the string would have been 'usr/bin/spam'.

The os.path.join() function is helpful if you need to create strings for filenames. These strings

will be passed to several of the file-related functions introduced in this chapter. For example,

the following example joins names from a list of filenames to the end of a folder’s name:

>>> myFiles = ['accounts.txt', 'details.csv', 'invite.docx']

>>> for filename in myFiles:

print(os.path.join('C:\\Users\\asweigart', filename))

C:\Users\asweigart\accounts.txt

C:\Users\asweigart\details.csv

C:\Users\asweigart\invite.docx

THE CURRENT WORKING DIRECTORY

Every program that runs on your computer has a current working directory, or cwd. Any

filenames or paths that do not begin with the root folder are assumed to be under the current

working directory. You can get the current working directory as a string value with

the os.getcwd() function and change it with os.chdir(). Enter the following into the interactive

shell:

>>> import os

>>> os.getcwd()

'C:\\Python34'

>>> os.chdir('C:\\Windows\\System32')

>>> os.getcwd()

'C:\\Windows\\System32'

Here, the current working directory is set to C:\Python34, so the filename project.docx refers

to C:\Python34\project.docx. When we change the current working directory

to C:\Windows, project.docx is interpreted as C:\ Windows\project.docx.

Python will display an error if you try to change to a directory that does not exist.

>>> os.chdir('C:\\ThisFolderDoesNotExist')

Traceback (most recent call last):

File "<pyshell#18>", line 1, in <module>

os.chdir('C:\\ThisFolderDoesNotExist')

FileNotFoundError: [WinError 2] The system cannot find the file specified:

'C:\\ThisFolderDoesNotExist'

NOTE

ADUP/18CS55 Module3

Dept. of CSE

While folder is the more modern name for directory, note that current working directory (or

just working directory) is the standard term, not current working folder.

ABSOLUTE VS. RELATIVE PATHS

There are two ways to specify a file path.

 An absolute path, which always begins with the root folder

 A relative path, which is relative to the program’s current working directory

There are also the dot (.) and dot-dot (..) folders. These are not real folders but special names

that can be used in a path. A single period (―dot‖) for a folder name is shorthand for ―this

directory.‖ Two periods (―dot-dot‖) means ―the parent folder.‖

Figure 8-2 is an example of some folders and files. When the current working directory is set

to C:\bacon, the relative paths for the other folders and files are set as they are in the figure.

Figure 8-2. The relative paths for folders and files in the working directory C:\bacon

The .\ at the start of a relative path is optional. For example, .\spam.txt and spam.txt refer to

the same file.

CREATING NEW FOLDERS WITH OS.MAKEDIRS()

Your programs can create new folders (directories) with the os.makedirs() function. Enter the

following into the interactive shell:

>>> import os

https://automatetheboringstuff.com/chapter8/#calibre_link-83

ADUP/18CS55 Module3

Dept. of CSE

>>> os.makedirs('C:\\delicious\\walnut\\waffles')

This will create not just the C:\delicious folder but also a walnut folder

inside C:\delicious and a waffles folder inside C:\delicious\walnut. That is, os.makedirs() will

create any necessary intermediate folders in order to ensure that the full path exists. Figure 8-

3 shows this hierarchy of folders.

Figure 8-3. The result of os.makedirs('C:\\delicious \\walnut\\waffles')

THE OS.PATH MODULE

The os.path module contains many helpful functions related to filenames and file paths. For

instance, you’ve already used os.path.join() to build paths in a way that will work on any

operating system. Since os.path is a module inside the os module, you can import it by simply

running import os. Whenever your programs need to work with files, folders, or file paths,

you can refer to the short examples in this section. The full documentation for

the os.path module is on the Python website at http://docs.python.org/3/library/os.path.html.

NOTE

Most of the examples that follow in this section will require the os module, so remember to

import it at the beginning of any script you write and any time you restart IDLE. Otherwise,

you’ll get a NameError: name 'os' is not defined error message.

HANDLING ABSOLUTE AND RELATIVE PATHS

The os.path module provides functions for returning the absolute path of a relative path and

for checking whether a given path is an absolute path.

 Calling os.path.abspath(path) will return a string of the absolute path of the argument.

This is an easy way to convert a relative path into an absolute one.

 Calling os.path.isabs(path) will return True if the argument is an absolute path

and False if it is a relative path.

https://automatetheboringstuff.com/chapter8/#calibre_link-84
https://automatetheboringstuff.com/chapter8/#calibre_link-84
http://docs.python.org/3/library/os.path.html

ADUP/18CS55 Module3

Dept. of CSE

 Calling os.path.relpath(path, start) will return a string of a relative path from

the start path to path. If start is not provided, the current working directory is used as

the start path.

Try these functions in the interactive shell:

>>> os.path.abspath('.')

'C:\\Python34'

>>> os.path.abspath('.\\Scripts')

'C:\\Python34\\Scripts'

>>> os.path.isabs('.')

False

>>> os.path.isabs(os.path.abspath('.'))

True

Since C:\Python34 was the working directory when os.path.abspath() was called, the ―single-

dot‖ folder represents the absolute path 'C:\\Python34'.

NOTE

Since your system probably has different files and folders on it than mine, you won’t be able

to follow every example in this chapter exactly. Still, try to follow along using folders that

exist on your computer.

Enter the following calls to os.path.relpath() into the interactive shell:

>>> os.path.relpath('C:\\Windows', 'C:\\')

'Windows'

>>> os.path.relpath('C:\\Windows', 'C:\\spam\\eggs')

'..\\..\\Windows'

>>> os.getcwd() 'C:\\Python34'

Calling os.path.dirname(path) will return a string of everything that comes before the last

slash in the path argument. Calling os.path.basename(path) will return a string of everything

that comes after the last slash in the path argument. The dir name and base name of a path are

outlined in Figure 8-4.

Figure 8-4. The base name follows the last slash in a path and is the same as the filename.

The dir name is everything before the last slash.

https://automatetheboringstuff.com/chapter8/#calibre_link-85

ADUP/18CS55 Module3

Dept. of CSE

For example, enter the following into the interactive shell:

>>> path = 'C:\\Windows\\System32\\calc.exe'

>>> os.path.basename(path)

'calc.exe'

>>> os.path.dirname(path)

'C:\\Windows\\System32'

If you need a path’s dir name and base name together, you can just call os.path.split() to get a

tuple value with these two strings, like so:

>>> calcFilePath = 'C:\\Windows\\System32\\calc.exe'

>>> os.path.split(calcFilePath)

('C:\\Windows\\System32', 'calc.exe')

Notice that you could create the same tuple by

calling os.path.dirname() and os.path.basename() and placing their return values in a tuple.

>>> (os.path.dirname(calcFilePath), os.path.basename(calcFilePath))

('C:\\Windows\\System32', 'calc.exe')

But os.path.split() is a nice shortcut if you need both values.

Also, note that os.path.split() does not take a file path and return a list of strings of each

folder. For that, use the split() string method and split on the string in os.sep. Recall from

earlier that the os.sep variable is set to the correct folder-separating slash for the computer

running the program.

For example, enter the following into the interactive shell:

>>> calcFilePath.split(os.path.sep)

['C:', 'Windows', 'System32', 'calc.exe']

On OS X and Linux systems, there will be a blank string at the start of the returned list:

>>> '/usr/bin'.split(os.path.sep)

['', 'usr', 'bin']

The split() string method will work to return a list of each part of the path. It will work on any

operating system if you pass it os.path.sep.

FINDING FILE SIZES AND FOLDER CONTENTS

ADUP/18CS55 Module3

Dept. of CSE

Once you have ways of handling file paths, you can then start gathering information about

specific files and folders. The os.path module provides functions for finding the size of a file

in bytes and the files and folders inside a given folder.

 Calling os.path.getsize(path) will return the size in bytes of the file in

the path argument.

 Calling os.listdir(path) will return a list of filename strings for each file in

the path argument. (Note that this function is in the os module, not os.path.)

Here’s what I get when I try these functions in the interactive shell:

>>> os.path.getsize('C:\\Windows\\System32\\calc.exe')

776192

>>> os.listdir('C:\\Windows\\System32')

['0409', '12520437.cpx', '12520850.cpx', '5U877.ax', 'aaclient.dll',

--snip--

'xwtpdui.dll', 'xwtpw32.dll', 'zh-CN', 'zh-HK', 'zh-TW', 'zipfldr.dll']

As you can see, the calc.exe program on my computer is 776,192 bytes in size, and I have a

lot of files in C:\Windows\system32. If I want to find the total size of all the files in this

directory, I can use os.path.getsize() and os.listdir() together.

>>> totalSize = 0

>>> for filename in os.listdir('C:\\Windows\\System32'):

totalSize = totalSize + os.path.getsize(os.path.join('C:\\Windows\\System32',

filename))

>>> print(totalSize)

1117846456

As I loop over each filename in the C:\Windows\System32 folder, the totalSize variable is

incremented by the size of each file. Notice how when I call os.path.getsize(), I

use os.path.join() to join the folder name with the current filename. The integer

that os.path.getsize() returns is added to the value of totalSize. After looping through all the

files, I print totalSize to see the total size of the C:\Windows\System32 folder.

CHECKING PATH VALIDITY

Many Python functions will crash with an error if you supply them with a path that does not

exist. The os.path module provides functions to check whether a given path exists and

whether it is a file or folder.

 Calling os.path.exists(path) will return True if the file or folder referred to in the

argument exists and will return False if it does not exist.

ADUP/18CS55 Module3

Dept. of CSE

 Calling os.path.isfile(path) will return True if the path argument exists and is a file

and will return False otherwise.

 Calling os.path.isdir(path) will return True if the path argument exists and is a folder

and will return False otherwise.

Here’s what I get when I try these functions in the interactive shell:

>>> os.path.exists('C:\\Windows')

True

>>> os.path.exists('C:\\some_made_up_folder')

False

>>> os.path.isdir('C:\\Windows\\System32')

True

>>> os.path.isfile('C:\\Windows\\System32')

False

>>> os.path.isdir('C:\\Windows\\System32\\calc.exe')

False

>>> os.path.isfile('C:\\Windows\\System32\\calc.exe')

True

You can determine whether there is a DVD or flash drive currently attached to the computer

by checking for it with the os.path.exists() function. For instance, if I wanted to check for a

flash drive with the volume named D:\ on my Windows computer, I could do that with the

following:

>>> os.path.exists('D:\\')

False

Oops! It looks like I forgot to plug in my flash drive.

THE FILE READING/WRITING PROCESS

Once you are comfortable working with folders and relative paths, you’ll be able to specify

the location of files to read and write. The functions covered in the next few sections will

apply to plaintext files. Plaintext files contain only basic text characters and do not include

font, size, or color information. Text files with the .txt extension or Python script files with

the .py extension are examples of plaintext files. These can be opened with Windows’s

Notepad or OS X’s TextEdit application. Your programs can easily read the contents of

plaintext files and treat them as an ordinary string value.

Binary files are all other file types, such as word processing documents, PDFs, images,

spreadsheets, and executable programs. If you open a binary file in Notepad or TextEdit, it

will look like scrambled nonsense, like in Figure 8-5.

https://automatetheboringstuff.com/chapter8/#calibre_link-86

ADUP/18CS55 Module3

Dept. of CSE

Figure 8-5. The Windows calc.exe program opened in Notepad

Since every different type of binary file must be handled in its own way, this book will not go

into reading and writing raw binary files directly. Fortunately, many modules make working

with binary files easier—you will explore one of them, the shelve module, later in this

chapter.

There are three steps to reading or writing files in Python.

1. Call the open() function to return a File object.

2. Call the read() or write() method on the File object.

3. Close the file by calling the close() method on the File object.

OPENING FILES WITH THE OPEN() FUNCTION

To open a file with the open() function, you pass it a string path indicating the file you want

to open; it can be either an absolute or relative path. The open() function returns a File object.

Try it by creating a text file named hello.txt using Notepad or TextEdit. Type Hello world! as

the content of this text file and save it in your user home folder. Then, if you’re using

Windows, enter the following into the interactive shell:

>>> helloFile = open('C:\\Users\\your_home_folder\\hello.txt')

If you’re using OS X, enter the following into the interactive shell instead:

>>> helloFile = open('/Users/your_home_folder/hello.txt',’r’)

Make sure to replace your_home_folder with your computer username. For example, my

username is asweigart, so I’d enter 'C:\\Users\\asweigart\\ hello.txt' on Windows.

ADUP/18CS55 Module3

Dept. of CSE

Both these commands will open the file in ―reading plaintext‖ mode, or read mode for short.

When a file is opened in read mode, Python lets you only read data from the file; you can’t

write or modify it in any way. Read mode is the default mode for files you open in Python.

But if you don’t want to rely on Python’s defaults, you can explicitly specify the mode by

passing the string value 'r' as a second argument to open(). So open('/Users/asweigart/

hello.txt', 'r') and open('/Users/asweigart/hello.txt') do the same thing.

The call to open() returns a File object. A File object represents a file on your computer; it is

simply another type of value in Python, much like the lists and dictionaries you’re already

familiar with. In the previous example, you stored the File object in the variable helloFile.

Now, whenever you want to read from or write to the file, you can do so by calling methods

on the File object in helloFile.

READING THE CONTENTS OF FILES

Now that you have a File object, you can start reading from it. If you want to read the entire

contents of a file as a string value, use the File object’s read() method. Let’s continue with

the hello.txt File object you stored in helloFile. Enter the following into the interactive shell:

>>> helloContent = helloFile.read()

>>> helloContent

'Hello world!'

If you think of the contents of a file as a single large string value, the read() method returns

the string that is stored in the file.

Alternatively, you can use the readlines() method to get a list of string values from the file,

one string for each line of text. For example, create a file named sonnet29.txt in the same

directory as hello.txt and write the following text in it:

When, in disgrace with fortune and men's eyes,

I all alone beweep my outcast state,

And trouble deaf heaven with my bootless cries,

And look upon myself and curse my fate,

Make sure to separate the four lines with line breaks. Then enter the following into the

interactive shell:

>>> sonnetFile = open('sonnet29.txt')

>>> sonnetFile.readlines()

[When, in disgrace with fortune and men's eyes,\n', ' I all alone beweep my

outcast state,\n', And trouble deaf heaven with my bootless cries,\n', And

look upon myself and curse my fate,']

ADUP/18CS55 Module3

Dept. of CSE

Note that each of the string values ends with a newline character, \n, except for the last line of

the file. A list of strings is often easier to work with than a single large string value.

WRITING TO FILES

Python allows you to write content to a file in a way similar to how the print() function

―writes‖ strings to the screen. You can’t write to a file you’ve opened in read mode, though.

Instead, you need to open it in ―write plaintext‖ mode or ―append plaintext‖ mode, or write

mode and append mode for short.

Write mode will overwrite the existing file and start from scratch, just like when you

overwrite a variable’s value with a new value. Pass 'w' as the second argument to open() to

open the file in write mode. Append mode, on the other hand, will append text to the end of

the existing file. You can think of this as appending to a list in a variable, rather than

overwriting the variable altogether. Pass 'a' as the second argument to open() to open the file

in append mode.

If the filename passed to open() does not exist, both write and append mode will create a

new, blank file. After reading or writing a file, call the close() method before opening the file

again.

Let’s put these concepts together. Enter the following into the interactive shell:

>>> baconFile = open('bacon.txt', 'w')

>>> baconFile.write('Hello world!\n')

13

>>> baconFile.close()

>>> baconFile = open('bacon.txt', 'a')

>>> baconFile.write('Bacon is not a vegetable.')

25

>>> baconFile.close()

>>> baconFile = open('bacon.txt')

>>> content = baconFile.read()

>>> baconFile.close()

>>> print(content)

Hello world!

Bacon is not a vegetable.

First, we open bacon.txt in write mode. Since there isn’t a bacon.txt yet, Python creates one.

Calling write() on the opened file and passing write() the string argument 'Hello world!

/n' writes the string to the file and returns the number of characters written, including the

newline. Then we close the file.

ADUP/18CS55 Module3

Dept. of CSE

To add text to the existing contents of the file instead of replacing the string we just wrote,

we open the file in append mode. We write 'Bacon is not a vegetable.' to the file and close it.

Finally, to print the file contents to the screen, we open the file in its default read mode,

call read(), store the resulting File object in content, close the file, and print content.

Note that the write() method does not automatically add a newline character to the end of the

string like the print() function does. You will have to add this character yourself.

SAVING VARIABLES WITH THE SHELVE MODULE

You can save variables in your Python programs to binary shelf files using

the shelve module. This way, your program can restore data to variables from the hard drive.

The shelve module will let you add Save and Open features to your program. For example, if

you ran a program and entered some configuration settings, you could save those settings to a

shelf file and then have the program load them the next time it is run.

Enter the following into the interactive shell:

>>> import shelve

>>> shelfFile = shelve.open('mydata')

>>> cats = ['Zophie', 'Pooka', 'Simon']

>>> shelfFile['cats'] = cats

>>> shelfFile.close()

To read and write data using the shelve module, you first import shelve.

Call shelve.open() and pass it a filename, and then store the returned shelf value in a variable.

You can make changes to the shelf value as if it were a dictionary. When you’re done,

call close() on the shelf value. Here, our shelf value is stored in shelfFile. We create a

list cats and write shelfFile['cats'] = cats to store the list in shelfFile as a value associated with

the key 'cats' (like in a dictionary). Then we call close() on shelfFile.

After running the previous code on Windows, you will see three new files in the current

working directory: mydata.bak, mydata.dat, and mydata.dir. On OS X, only a

single mydata.db file will be created.

These binary files contain the data you stored in your shelf. The format of these binary files is

not important; you only need to know what the shelve module does, not how it does it. The

module frees you from worrying about how to store your program’s data to a file.

Your programs can use the shelve module to later reopen and retrieve the data from these

shelf files. Shelf values don’t have to be opened in read or write mode—they can do both

once opened. Enter the following into the interactive shell:

>>> shelfFile = shelve.open('mydata')

ADUP/18CS55 Module3

Dept. of CSE

>>> type(shelfFile)

<class 'shelve.DbfilenameShelf'>

>>> shelfFile['cats']

['Zophie', 'Pooka', 'Simon']

>>> shelfFile.close()

Here, we open the shelf files to check that our data was stored correctly.

Entering shelfFile['cats'] returns the same list that we stored earlier, so we know that the list is

correctly stored, and we call close().

Just like dictionaries, shelf values have keys() and values() methods that will return list-like

values of the keys and values in the shelf. Since these methods return list-like values instead

of true lists, you should pass them to the list() function to get them in list form. Enter the

following into the interactive shell:

>>> shelfFile = shelve.open('mydata')

>>> list(shelfFile.keys())

['cats']

>>> list(shelfFile.values())

[['Zophie', 'Pooka', 'Simon']]

>>> shelfFile.close()

Plaintext is useful for creating files that you’ll read in a text editor such as Notepad or

TextEdit, but if you want to save data from your Python programs, use the shelve module.

SAVING VARIABLES WITH THE PPRINT.PFORMAT() FUNCTION

Recall from Pretty Printing that the pprint.pprint() function will ―pretty print‖ the contents of

a list or dictionary to the screen, while the pprint.pformat() function will return this same text

as a string instead of printing it. Not only is this string formatted to be easy to read, but it is

also syntactically correct Python code. Say you have a dictionary stored in a variable and you

want to save this variable and its contents for future use. Using pprint.pformat() will give you

a string that you can write to .py file. This file will be your very own module that you can

import whenever you want to use the variable stored in it.

For example, enter the following into the interactive shell:

>>> import pprint

>>> cats = [{'name': 'Zophie', 'desc': 'chubby'}, {'name': 'Pooka', 'desc': 'fluffy'}]

>>> pprint.pformat(cats)

"[{'desc': 'chubby', 'name': 'Zophie'}, {'desc': 'fluffy', 'name': 'Pooka'}]"

>>> fileObj = open('myCats.py', 'w')

>>> fileObj.write('cats = ' + pprint.pformat(cats) + '\n')

83

https://automatetheboringstuff.com/chapter8/#calibre_link-87

ADUP/18CS55 Module3

Dept. of CSE

>>> fileObj.close()

Here, we import pprint to let us use pprint.pformat(). We have a list of dictionaries, stored in

a variable cats. To keep the list in cats available even after we close the shell, we

use pprint.pformat() to return it as a string. Once we have the data in cats as a string, it’s easy

to write the string to a file, which we’ll call myCats.py.

The modules that an import statement imports are themselves just Python scripts. When the

string from pprint.pformat() is saved to a .py file, the file is a module that can be imported

just like any other.

And since Python scripts are themselves just text files with the .py file extension, your Python

programs can even generate other Python programs. You can then import these files into

scripts.

>>> import myCats

>>> myCats.cats

[{'name': 'Zophie', 'desc': 'chubby'}, {'name': 'Pooka', 'desc': 'fluffy'}]

>>> myCats.cats[0]

{'name': 'Zophie', 'desc': 'chubby'}

>>> myCats.cats[0]['name']

'Zophie'

The benefit of creating a .py file (as opposed to saving variables with the shelve module) is

that because it is a text file, the contents of the file can be read and modified by anyone with a

simple text editor. For most applications, however, saving data using the shelve module is the

preferred way to save variables to a file. Only basic data types such as integers, floats, strings,

lists, and dictionaries can be written to a file as simple text. File objects, for example, cannot

be encoded as text.

PROJECT: GENERATING RANDOM QUIZ FILES

Say you’re a geography teacher with 35 students in your class and you want to give a pop

quiz on US state capitals. Alas, your class has a few bad eggs in it, and you can’t trust the

students not to cheat. You’d like to randomize the order of questions so that each quiz is

unique, making it impossible for anyone to crib answers from anyone else. Of course, doing

this by hand would be a lengthy and boring affair. Fortunately, you know some Python.

Here is what the program does:

 Creates 35 different quizzes.

 Creates 50 multiple-choice questions for each quiz, in random order.

 Provides the correct answer and three random wrong answers for each question, in

random order.

ADUP/18CS55 Module3

Dept. of CSE

 Writes the quizzes to 35 text files.

 Writes the answer keys to 35 text files.

This means the code will need to do the following:

 Store the states and their capitals in a dictionary.

 Call open(), write(), and close() for the quiz and answer key text files.

 Use random.shuffle() to randomize the order of the questions and multiple-choice

options.

STEP 1: STORE THE QUIZ DATA IN A DICTIONARY

The first step is to create a skeleton script and fill it with your quiz data. Create a file

named randomQuizGenerator.py, and make it look like the following:

#! python3

randomQuizGenerator.py - Creates quizzes with questions and answers in

random order, along with the answer key.

❶ import random

The quiz data. Keys are states and values are their capitals.

❷ capitals = {'Alabama': 'Montgomery', 'Alaska': 'Juneau', 'Arizona': 'Phoenix',

'Arkansas': 'Little Rock', 'California': 'Sacramento', 'Colorado': 'Denver',

'Connecticut': 'Hartford', 'Delaware': 'Dover', 'Florida': 'Tallahassee',

'Georgia': 'Atlanta', 'Hawaii': 'Honolulu', 'Idaho': 'Boise', 'Illinois':

'Springfield', 'Indiana': 'Indianapolis', 'Iowa': 'Des Moines', 'Kansas':

'Topeka', 'Kentucky': 'Frankfort', 'Louisiana': 'Baton Rouge', 'Maine':

'Augusta', 'Maryland': 'Annapolis', 'Massachusetts': 'Boston', 'Michigan':

'Lansing', 'Minnesota': 'Saint Paul', 'Mississippi': 'Jackson', 'Missouri':

'Jefferson City', 'Montana': 'Helena', 'Nebraska': 'Lincoln', 'Nevada':

'Carson City', 'New Hampshire': 'Concord', 'New Jersey': 'Trenton', 'New

Mexico': 'Santa Fe', 'New York': 'Albany', 'North Carolina': 'Raleigh',

'North Dakota': 'Bismarck', 'Ohio': 'Columbus', 'Oklahoma': 'Oklahoma City',

'Oregon': 'Salem', 'Pennsylvania': 'Harrisburg', 'Rhode Island': 'Providence',

'South Carolina': 'Columbia', 'South Dakota': 'Pierre', 'Tennessee':

'Nashville', 'Texas': 'Austin', 'Utah': 'Salt Lake City', 'Vermont':

'Montpelier', 'Virginia': 'Richmond', 'Washington': 'Olympia', 'West

Virginia': 'Charleston', 'Wisconsin': 'Madison', 'Wyoming': 'Cheyenne'}

Generate 35 quiz files.

❸ for quizNum in range(35):

TODO: Create the quiz and answer key files.

ADUP/18CS55 Module3

Dept. of CSE

TODO: Write out the header for the quiz.

TODO: Shuffle the order of the states.

TODO: Loop through all 50 states, making a question for each.

Since this program will be randomly ordering the questions and answers, you’ll need to

import the random module ❶ to make use of its functions. The capitals variable ❷ contains

a dictionary with US states as keys and their capitals as values. And since you want to create

35 quizzes, the code that actually generates the quiz and answer key files (marked

with TODO comments for now) will go inside a for loop that loops 35 times ❸. (This

number can be changed to generate any number of quiz files.)

STEP 2: CREATE THE QUIZ FILE AND SHUFFLE THE QUESTION ORDER

Now it’s time to start filling in those TODOs.

The code in the loop will be repeated 35 times—once for each quiz—so you have to worry

about only one quiz at a time within the loop. First you’ll create the actual quiz file. It needs

to have a unique filename and should also have some kind of standard header in it, with

places for the student to fill in a name, date, and class period. Then you’ll need to get a list of

states in randomized order, which can be used later to create the questions and answers for

the quiz.

Add the following lines of code to randomQuizGenerator.py:

#! python3

randomQuizGenerator.py - Creates quizzes with questions and answers in

random order, along with the answer key.

--snip--

Generate 35 quiz files.

for quizNum in range(35):

Create the quiz and answer key files.

❶ quizFile = open('capitalsquiz%s.txt' % (quizNum + 1), 'w')

❷ answerKeyFile = open('capitalsquiz_answers%s.txt' % (quizNum + 1), 'w')

Write out the header for the quiz.

❸ quizFile.write('Name:\n\nDate:\n\nPeriod:\n\n')

quizFile.write((' ' * 20) + 'State Capitals Quiz (Form %s)' % (quizNum + 1))

quizFile.write('\n\n')

Shuffle the order of the states.

ADUP/18CS55 Module3

Dept. of CSE

states = list(capitals.keys())

❹ random.shuffle(states)

TODO: Loop through all 50 states, making a question for each.

The filenames for the quizzes will be capitalsquiz<N>.txt, where <N> is a unique number

for the quiz that comes from quizNum, the for loop’s counter. The answer key

for capitalsquiz<N>.txt will be stored in a text file named capitalsquiz_answers<N>.txt.

Each time through the loop, the %s placeholder

in 'capitalsquiz%s.txt' and 'capitalsquiz_answers%s.txt' will be replaced by (quizNum + 1), so

the first quiz and answer key created will be capitalsquiz1.txt and capitalsquiz_answers1.txt.

These files will be created with calls to the open() function at ❶ and ❷, with 'w' as the

second argument to open them in write mode.

The write() statements at ❸ create a quiz header for the student to fill out. Finally, a

randomized list of US states is created with the help of the random.shuffle() function ❹,

which randomly reorders the values in any list that is passed to it.

STEP 3: CREATE THE ANSWER OPTIONS

Now you need to generate the answer options for each question, which will be multiple

choice from A to D. You’ll need to create another for loop—this one to generate the content

for each of the 50 questions on the quiz. Then there will be a third for loop nested inside to

generate the multiple-choice options for each question. Make your code look like the

following:

#! python3

randomQuizGenerator.py - Creates quizzes with questions and answers in

random order, along with the answer key.

--snip--

Loop through all 50 states, making a question for each.

for questionNum in range(50):

Get right and wrong answers.

❶ correctAnswer = capitals[states[questionNum]]

❷ wrongAnswers = list(capitals.values())

❸ del wrongAnswers[wrongAnswers.index(correctAnswer)]

❹ wrongAnswers = random.sample(wrongAnswers, 3)

❺ answerOptions = wrongAnswers + [correctAnswer]

❻ random.shuffle(answerOptions)

TODO: Write the question and answer options to the quiz file.

ADUP/18CS55 Module3

Dept. of CSE

TODO: Write the answer key to a file.

The correct answer is easy to get—it’s stored as a value in the capitals dictionary ❶. This

loop will loop through the states in the shuffled states list, from states[0] to states[49], find

each state in capitals, and store that state’s corresponding capital in correctAnswer.

The list of possible wrong answers is trickier. You can get it by duplicating all the values in

the capitals dictionary ❷, deleting the correct answer ❸, and selecting three random values

from this list ❹. The random.sample() function makes it easy to do this selection. Its first

argument is the list you want to select from; the second argument is the number of values you

want to select. The full list of answer options is the combination of these three wrong answers

with the correct answers ❺. Finally, the answers need to be randomized ❻ so that the

correct response isn’t always choice D.

STEP 4: WRITE CONTENT TO THE QUIZ AND ANSWER KEY FILES

All that is left is to write the question to the quiz file and the answer to the answer key file.

Make your code look like the following:

#! python3

randomQuizGenerator.py - Creates quizzes with questions and answers in

random order, along with the answer key.

--snip--

Loop through all 50 states, making a question for each.

for questionNum in range(50):

--snip--

Write the question and the answer options to the quiz file.

quizFile.write('%s. What is the capital of %s?\n' % (questionNum + 1,

states[questionNum]))

❶ for i in range(4):

❷ quizFile.write(' %s. %s\n' % ('ABCD'[i], answerOptions[i]))

quizFile.write('\n')

Write the answer key to a file.

❸ answerKeyFile.write('%s. %s\n' % (questionNum + 1, 'ABCD'[

answerOptions.index(correctAnswer)]))

quizFile.close()

answerKeyFile.close()

A for loop that goes through integers 0 to 3 will write the answer options in

the answerOptions list ❶. The expression 'ABCD'[i] at ❷ treats the string 'ABCD' as an

ADUP/18CS55 Module3

Dept. of CSE

array and will evaluate to 'A','B', 'C', and then 'D' on each respective iteration through the

loop.

In the final line ❸, the expression answerOptions.index(correctAnswer) will find the integer

index of the correct answer in the randomly ordered answer options,

and 'ABCD'[answerOptions.index(correctAnswer)] will evaluate to the correct answer’s letter

to be written to the answer key file.

After you run the program, this is how your capitalsquiz1.txt file will look, though of course

your questions and answer options may be different from those shown here, depending on the

outcome of your random.shuffle() calls:

Name:

Date:

Period:

State Capitals Quiz (Form 1)

1. What is the capital of West Virginia?

A. Hartford

B. Santa Fe

C. Harrisburg

D. Charleston

2. What is the capital of Colorado?

A. Raleigh

B. Harrisburg

C. Denver

D. Lincoln

--snip--

The corresponding capitalsquiz_answers1.txt text file will look like this:

1. D

2. C

3. A

4. C

--snip--

ADUP/18CS55 Module3

Dept. of CSE

PROJECT: MULTICLIPBOARD

Say you have the boring task of filling out many forms in a web page or software with several

text fields. The clipboard saves you from typing the same text over and over again. But only

one thing can be on the clipboard at a time. If you have several different pieces of text that

you need to copy and paste, you have to keep highlighting and copying the same few things

over and over again.

You can write a Python program to keep track of multiple pieces of text. This

―multiclipboard‖ will be named mcb.pyw (since ―mcb‖ is shorter to type than

―multiclipboard‖). The .pyw extension means that Python won’t show a Terminal window

when it runs this program. (See Appendix B for more details.)

The program will save each piece of clipboard text under a keyword. For example, when you

run py mcb.pyw save spam, the current contents of the clipboard will be saved with the

keyword spam. This text can later be loaded to the clipboard again by running py mcb.pyw

spam. And if the user forgets what keywords they have, they can run py mcb.pyw list to copy

a list of all keywords to the clipboard.

Here’s what the program does:

 The command line argument for the keyword is checked.

 If the argument is save, then the clipboard contents are saved to the keyword.

 If the argument is list, then all the keywords are copied to the clipboard.

 Otherwise, the text for the keyword is copied to the clipboard.

This means the code will need to do the following:

 Read the command line arguments from sys.argv.

 Read and write to the clipboard.

 Save and load to a shelf file.

If you use Windows, you can easily run this script from the Run... window by creating a

batch file named mcb.bat with the following content:

@pyw.exe C:\Python34\mcb.pyw %*

STEP 1: COMMENTS AND SHELF SETUP

Let’s start by making a skeleton script with some comments and basic setup. Make your code

look like the following:

#! python3

mcb.pyw - Saves and loads pieces of text to the clipboard.

❶ # Usage: py.exe mcb.pyw save <keyword> - Saves clipboard to keyword.

ADUP/18CS55 Module3

Dept. of CSE

py.exe mcb.pyw <keyword> - Loads keyword to clipboard.

py.exe mcb.pyw list - Loads all keywords to clipboard.

❷ import shelve, pyperclip, sys

❸ mcbShelf = shelve.open('mcb')

TODO: Save clipboard content.

TODO: List keywords and load content.

mcbShelf.close()

It’s common practice to put general usage information in comments at the top of the file ❶.

If you ever forget how to run your script, you can always look at these comments for a

reminder. Then you import your modules ❷. Copying and pasting will require

the pyperclip module, and reading the command line arguments will require the sys module.

The shelve module will also come in handy: Whenever the user wants to save a new piece of

clipboard text, you’ll save it to a shelf file. Then, when the user wants to paste the text back

to their clipboard, you’ll open the shelf file and load it back into your program. The shelf file

will be named with the prefix mcb ❸.

STEP 2: SAVE CLIPBOARD CONTENT WITH A KEYWORD

The program does different things depending on whether the user wants to save text to a

keyword, load text into the clipboard, or list all the existing keywords. Let’s deal with that

first case. Make your code look like the following:

#! python3

mcb.pyw - Saves and loads pieces of text to the clipboard.

--snip--

Save clipboard content.

❶ if len(sys.argv) == 3 and sys.argv[1].lower() == 'save':

❷ mcbShelf[sys.argv[2]] = pyperclip.paste()

elif len(sys.argv) == 2:

❸ # TODO: List keywords and load content.

mcbShelf.close()

If the first command line argument (which will always be at index 1 of the sys.argv list)

is 'save' ❶, the second command line argument is the keyword for the current content of the

clipboard. The keyword will be used as the key for mcbShelf, and the value will be the text

currently on the clipboard ❷.

ADUP/18CS55 Module3

Dept. of CSE

If there is only one command line argument, you will assume it is either 'list' or a keyword to

load content onto the clipboard. You will implement that code later. For now, just put

a TODO comment there ❸.

STEP 3: LIST KEYWORDS AND LOAD A KEYWORD’S CONTENT

Finally, let’s implement the two remaining cases: The user wants to load clipboard text in

from a keyword, or they want a list of all available keywords. Make your code look like the

following:

#! python3

mcb.pyw - Saves and loads pieces of text to the clipboard.

--snip--

Save clipboard content.

if len(sys.argv) == 3 and sys.argv[1].lower() == 'save':

mcbShelf[sys.argv[2]] = pyperclip.paste()

elif len(sys.argv) == 2:

List keywords and load content.

❶ if sys.argv[1].lower() == 'list':

❷ pyperclip.copy(str(list(mcbShelf.keys())))

elif sys.argv[1] in mcbShelf:

❸ pyperclip.copy(mcbShelf[sys.argv[1]])

mcbShelf.close()

If there is only one command line argument, first let’s check whether it’s 'list' ❶. If so, a

string representation of the list of shelf keys will be copied to the clipboard ❷. The user can

paste this list into an open text editor to read it.

Otherwise, you can assume the command line argument is a keyword. If this keyword exists

in the mcbShelf shelf as a key, you can load the value onto the clipboard ❸.

And that’s it! Launching this program has different steps depending on what operating

system your computer uses. See Appendix B for details for your operating system.

Recall the password locker program you created in Chapter 6 that stored the passwords in a

dictionary. Updating the passwords required changing the source code of the program. This

isn’t ideal because average users don’t feel comfortable changing source code to update their

software. Also, every time you modify the source code to a program, you run the risk of

accidentally introducing new bugs. By storing the data for a program in a different place than

the code, you can make your programs easier for others to use and more resistant to bugs.

https://automatetheboringstuff.com/chapter6

ADUP/18CS55 Module3

Dept. of CSE

SUMMARY

Files are organized into folders (also called directories), and a path describes the location of a

file. Every program running on your computer has a current working directory, which allows

you to specify file paths relative to the current location instead of always typing the full (or

absolute) path. The os.path module has many functions for manipulating file paths.

Your programs can also directly interact with the contents of text files. The open() function

can open these files to read in their contents as one large string (with the read() method) or as

a list of strings (with the readlines() method). The open() function can open files in write or

append mode to create new text files or add to existing text files, respectively.

In previous chapters, you used the clipboard as a way of getting large amounts of text into a

program, rather than typing it all in. Now you can have your programs read files directly from

the hard drive, which is a big improvement, since files are much less volatile than the

clipboard.

In the next chapter, you will learn how to handle the files themselves, by copying them,

deleting them, renaming them, moving them, and more.

PRACTICE QUESTIONS

Q: 1. What is a relative path relative to?

Q: 2. What does an absolute path start with?

Q: 3. What do the os.getcwd() and os.chdir() functions do?

Q: 4. What are the . and .. folders?

Q: 5. In C:\bacon\eggs\spam.txt, which part is the dir name, and which part is the base name?

Q: 6. What are the three ―mode‖ arguments that can be passed to the open() function?

Q: 7. What happens if an existing file is opened in write mode?

Q: 8. What is the difference between the read() and readlines() methods?

Q: 9. What data structure does a shelf value resemble?

PRACTICE PROJECTS

For practice, design and write the following programs.

EXTENDING THE MULTICLIPBOARD

Extend the multiclipboard program in this chapter so that it has a delete

<keyword> command line argument that will delete a keyword from the shelf. Then add

a delete command line argument that will delete all keywords.

ADUP/18CS55 Module3

Dept. of CSE

MAD LIBS

Create a Mad Libs program that reads in text files and lets the user add their own text

anywhere the word ADJECTIVE, NOUN, ADVERB, or VERB appears in the text file. For

example, a text file may look like this:

The ADJECTIVE panda walked to the NOUN and then VERB. A nearby NOUN was

unaffected by these events.

The program would find these occurrences and prompt the user to replace them.

Enter an adjective:

silly

Enter a noun:

chandelier

Enter a verb:

screamed

Enter a noun:

pickup truck

The following text file would then be created:

The silly panda walked to the chandelier and then screamed. A nearby pickup

truck was unaffected by these events.

The results should be printed to the screen and saved to a new text file.

REGEX SEARCH

Write a program that opens all .txt files in a folder and searches for any line that matches a

user-supplied regular expression. The results should be printed to the screen.

ADUP/18CS55 Module3

Dept. of CSE

ORGANIZING FILES

In the previous chapter, you learned how to create and write to new files in Python. Your

programs can also organize preexisting files on the hard drive. Maybe you’ve had the

experience of going through a folder full of dozens, hundreds, or even thousands of files and

copying, renaming, moving, or compressing them all by hand. Or consider tasks such as

these:

 Making copies of all PDF files (and only the PDF files) in every subfolder of a folder

 Removing the leading zeros in the filenames for every file in a folder of hundreds of files

named spam001.txt, spam002.txt, spam003.txt, and so on

 Compressing the contents of several folders into one ZIP file (which could be a simple

backup system)

All this boring stuff is just begging to be automated in Python. By programming your

computer to do these tasks, you can transform it into a quick-working file clerk who never

makes mistakes.

As you begin working with files, you may find it helpful to be able to quickly see what the

extension (.txt, .pdf, .jpg, and so on) of a file is. With macOS and Linux, your file browser

most likely shows extensions automatically. With Windows, file extensions may be hidden

by default. To show extensions, go to Start ▸ Control Panel ▸ Appearance and

Personalization ▸ Folder Options. On the View tab, under Advanced Settings, uncheck

the Hide extensions for known file types checkbox.

THE SHUTIL MODULE

The shutil (or shell utilities) module has functions to let you copy, move, rename, and delete

files in your Python programs. To use the shutil functions, you will first need to use import

shutil.

Copying Files and Folders

The shutil module provides functions for copying files, as well as entire folders.

Calling shutil.copy(source, destination) will copy the file at the path source to the folder

at the path destination. (Both source and destination can be strings or Path objects.)

If destination is a filename, it will be used as the new name of the copied file. This function

returns a string or Path object of the copied file.

Enter the following into the interactive shell to see how shutil.copy() works:

>>> import shutil, os

>>> from pathlib import Path

>>> p = Path.home()

➊ >>> shutil.copy(p / 'spam.txt', p / 'some_folder')

'C:\\Users\\Al\\some_folder\\spam.txt'

➋ >>> shutil.copy(p / 'eggs.txt', p / 'some_folder/eggs2.txt')

WindowsPath('C:/Users/Al/some_folder/eggs2.txt')

The first shutil.copy() call copies the file at C:\Users\Al\spam.txt to the

folder C:\Users\Al\some_folder. The return value is the path of the newly copied file. Note

that since a folder was specified as the destination ➊, the original spam.txt filename is used

for the new, copied file’s filename. The second shutil.copy() call ➋ also copies the file

ADUP/18CS55 Module3

Dept. of CSE

at C:\Users\Al\eggs.txt to the folder C:\Users\Al\some_folder but gives the copied file the

name eggs2.txt.

While shutil.copy() will copy a single file, shutil.copytree() will copy an entire folder and

every folder and file contained in it. Calling shutil.copytree(source, destination) will copy the

folder at the path source, along with all of its files and subfolders, to the folder at the

path destination. The source and destination parameters are both strings. The function returns

a string of the path of the copied folder.

Enter the following into the interactive shell:

>>> import shutil, os

>>> from pathlib import Path

>>> p = Path.home()

>>> shutil.copytree(p / 'spam', p / 'spam_backup')

WindowsPath('C:/Users/Al/spam_backup')

The shutil.copytree() call creates a new folder named spam_backup with the same content

as the original spam folder. You have now safely backed up your precious, precious spam.

Moving and Renaming Files and Folders

Calling shutil.move(source, destination) will move the file or folder at the path source to the

path destination and will return a string of the absolute path of the new location.

If destination points to a folder, the source file gets moved into destination and keeps its

current filename. For example, enter the following into the interactive shell:

>>> import shutil

>>> shutil.move('C:\\bacon.txt', 'C:\\eggs')

'C:\\eggs\\bacon.txt'

Assuming a folder named eggs already exists in the C:\ directory, this shutil.move() call

says, ―Move C:\bacon.txt into the folder C:\eggs.‖

If there had been a bacon.txt file already in C:\eggs, it would have been overwritten. Since

it’s easy to accidentally overwrite files in this way, you should take some care when

using move().

The destination path can also specify a filename. In the following example, the source file

is moved and renamed.

>>> shutil.move('C:\\bacon.txt', 'C:\\eggs\\new_bacon.txt')

'C:\\eggs\\new_bacon.txt'

This line says, ―Move C:\bacon.txt into the folder C:\eggs, and while you’re at it, rename

that bacon.txt file to new_bacon.txt.‖

Both of the previous examples worked under the assumption that there was a

folder eggs in the C:\ directory. But if there is no eggs folder, then move() will

rename bacon.txt to a file named eggs.

>>> shutil.move('C:\\bacon.txt', 'C:\\eggs')

'C:\\eggs'

ADUP/18CS55 Module3

Dept. of CSE

Here, move() can’t find a folder named eggs in the C:\ directory and so assumes

that destination must be specifying a filename, not a folder. So the bacon.txt text file is

renamed to eggs (a text file without the .txt file extension)—probably not what you wanted!

This can be a tough-to-spot bug in your programs since the move() call can happily do

something that might be quite different from what you were expecting. This is yet another

reason to be careful when using move().

Finally, the folders that make up the destination must already exist, or else Python will

throw an exception. Enter the following into the interactive shell:

>>> shutil.move('spam.txt', 'c:\\does_not_exist\\eggs\\ham')

Traceback (most recent call last):

--snip--

FileNotFoundError: [Errno 2] No such file or directory: 'c:\\does_not_exist\\

eggs\\ham'

Python looks for eggs and ham inside the directory does_not_exist. It doesn’t find the

nonexistent directory, so it can’t move spam.txt to the path you specified.

Permanently Deleting Files and Folders

You can delete a single file or a single empty folder with functions in the os module, whereas

to delete a folder and all of its contents, you use the shutil module.

 Calling os.unlink(path) will delete the file at path.

 Calling os.rmdir(path) will delete the folder at path. This folder must be empty of any files or

folders.

 Calling shutil.rmtree(path) will remove the folder at path, and all files and folders it contains

will also be deleted.

Be careful when using these functions in your programs! It’s often a good idea to first run

your program with these calls commented out and with print() calls added to show the files

that would be deleted. Here is a Python program that was intended to delete files that have

the .txt file extension but has a typo (highlighted in bold) that causes it to delete .rxt files

instead:

import os

from pathlib import Path

for filename in Path.home().glob('*.rxt'):

os.unlink(filename)

If you had any important files ending with .rxt, they would have been accidentally,

permanently deleted. Instead, you should have first run the program like this:

import os

from pathlib import Path
for filename in Path.home().glob('*.rxt'):

#os.unlink(filename)

print(filename)

ADUP/18CS55 Module3

Dept. of CSE

Now the os.unlink() call is commented, so Python ignores it. Instead, you will print the

filename of the file that would have been deleted. Running this version of the program first

will show you that you’ve accidentally told the program to delete .rxt files instead of .txt files.

Once you are certain the program works as intended, delete the print(filename) line and

uncomment the os.unlink(filename) line. Then run the program again to actually delete the

files.

Safe Deletes with the send2trash Module

Since Python’s built-in shutil.rmtree() function irreversibly deletes files and folders, it can be

dangerous to use. A much better way to delete files and folders is with the third-

party send2trash module. You can install this module by running pip install --user

send2trash from a Terminal window. (See Appendix A for a more in-depth explanation of

how to install third-party modules.)

Using send2trash is much safer than Python’s regular delete functions, because it will

send folders and files to your computer’s trash or recycle bin instead of permanently deleting

them. If a bug in your program deletes something with send2trash you didn’t intend to delete,

you can later restore it from the recycle bin.

After you have installed send2trash, enter the following into the interactive shell:

>>> import send2trash

>>> baconFile = open('bacon.txt', 'a') # creates the file

>>> baconFile.write('Bacon is not a vegetable.')

25

>>> baconFile.close()

>>> send2trash.send2trash('bacon.txt')

In general, you should always use the send2trash.send2trash() function to delete files and

folders. But while sending files to the recycle bin lets you recover them later, it will not free

up disk space like permanently deleting them does. If you want your program to free up disk

space, use the os and shutil functions for deleting files and folders. Note that

the send2trash() function can only send files to the recycle bin; it cannot pull files out of it.

WALKING A DIRECTORY TREE

Say you want to rename every file in some folder and also every file in every subfolder of

that folder. That is, you want to walk through the directory tree, touching each file as you go.

Writing a program to do this could get tricky; fortunately, Python provides a function to

handle this process for you.

Let’s look at the C:\delicious folder with its contents, shown in Figure 10-1.

https://automatetheboringstuff.com/2e/chapter10/#calibre_link-2
https://automatetheboringstuff.com/2e/chapter10/#calibre_link-1195

ADUP/18CS55 Module3

Dept. of CSE

Figure 10-1: An example folder that contains three folders and four files

Here is an example program that uses the os.walk() function on the directory tree

from Figure 10-1:

import os

for folderName, subfolders, filenames in os.walk('C:\\delicious'):

print('The current folder is ' + folderName)

for subfolder in subfolders:

print('SUBFOLDER OF ' + folderName + ': ' + subfolder)

for filename in filenames:

print('FILE INSIDE ' + folderName + ': '+ filename)

print('')

The os.walk() function is passed a single string value: the path of a folder. You can

use os.walk() in a for loop statement to walk a directory tree, much like how you can use

the range() function to walk over a range of numbers. Unlike range(), the os.walk() function

will return three values on each iteration through the loop:

 A string of the current folder’s name

 A list of strings of the folders in the current folder

 A list of strings of the files in the current folder

https://automatetheboringstuff.com/2e/chapter10/#calibre_link-1195

ADUP/18CS55 Module3

Dept. of CSE

(By current folder, I mean the folder for the current iteration of the for loop. The current

working directory of the program is not changed by os.walk().)

Just like you can choose the variable name i in the code for i in range(10):, you can also

choose the variable names for the three values listed earlier. I usually use the

names foldername, subfolders, and filenames.

When you run this program, it will output the following:

The current folder is C:\delicious

SUBFOLDER OF C:\delicious: cats

SUBFOLDER OF C:\delicious: walnut

FILE INSIDE C:\delicious: spam.txt

The current folder is C:\delicious\cats

FILE INSIDE C:\delicious\cats: catnames.txt

FILE INSIDE C:\delicious\cats: zophie.jpg

The current folder is C:\delicious\walnut

SUBFOLDER OF C:\delicious\walnut: waffles

The current folder is C:\delicious\walnut\waffles

FILE INSIDE C:\delicious\walnut\waffles: butter.txt.

Since os.walk() returns lists of strings for the subfolder and filename variables, you can

use these lists in their own for loops. Replace the print() function calls with your own custom

code. (Or if you don’t need one or both of them, remove the for loops.)

COMPRESSING FILES WITH THE ZIPFILE MODULE

You may be familiar with ZIP files (with the .zip file extension), which can hold the

compressed contents of many other files. Compressing a file reduces its size, which is useful

when transferring it over the internet. And since a ZIP file can also contain multiple files and

subfolders, it’s a handy way to package several files into one. This single file, called

an archive file, can then be, say, attached to an email.

Your Python programs can create and open (or extract) ZIP files using functions in

the zipfile module. Say you have a ZIP file named example.zip that has the contents shown

in Figure 10-2.

Figure 10-2: The contents of example.zip

You can download this ZIP file from https://nostarch.com/automatestuff2/ or just follow

along using a ZIP file already on your computer.

https://automatetheboringstuff.com/2e/chapter10/#calibre_link-1514
https://nostarch.com/automatestuff2/

ADUP/18CS55 Module3

Dept. of CSE

Reading ZIP Files

To read the contents of a ZIP file, first you must create a ZipFile object (note the capital

letters Z and F). ZipFile objects are conceptually similar to the File objects you saw returned

by the open() function in the previous chapter: they are values through which the program

interacts with the file. To create a ZipFile object, call the zipfile.ZipFile() function, passing it

a string of the .ZIP file’s filename. Note that zipfile is the name of the Python module,

and ZipFile() is the name of the function.

For example, enter the following into the interactive shell:

>>> import zipfile, os

>>> from pathlib import Path

>>> p = Path.home()

>>> exampleZip = zipfile.ZipFile(p / 'example.zip')

>>> exampleZip.namelist()

['spam.txt', 'cats/', 'cats/catnames.txt', 'cats/zophie.jpg']

>>> spamInfo = exampleZip.getinfo('spam.txt')

>>> spamInfo.file_size

13908

>>> spamInfo.compress_size

3828

➊ >>> f'Compressed file is {round(spamInfo.file_size / spamInfo

.compress_size, 2)}x smaller!'

)

'Compressed file is 3.63x smaller!'

>>> exampleZip.close()

A ZipFile object has a namelist() method that returns a list of strings for all the files and

folders contained in the ZIP file. These strings can be passed to the getinfo() ZipFile method

to return a ZipInfo object about that particular file. ZipInfo objects have their own attributes,

such as file_size and compress_size in bytes, which hold integers of the original file size and

compressed file size, respectively. While a ZipFile object represents an entire archive file,

a ZipInfo object holds useful information about a single file in the archive.

The command at ➊ calculates how efficiently example.zip is compressed by dividing the

original file size by the compressed file size and prints this information.

Extracting from ZIP Files

The extractall() method for ZipFile objects extracts all the files and folders from a ZIP file

into the current working directory.

>>> import zipfile, os

>>> from pathlib import Path

>>> p = Path.home()

>>> exampleZip = zipfile.ZipFile(p / 'example.zip')

➊ >>> exampleZip.extractall()

>>> exampleZip.close()

ADUP/18CS55 Module3

Dept. of CSE

After running this code, the contents of example.zip will be extracted to C:\. Optionally,

you can pass a folder name to extractall() to have it extract the files into a folder other than

the current working directory. If the folder passed to the extractall() method does not exist, it

will be created. For instance, if you replaced the call

at ➊ with exampleZip.extractall('C:\\delicious'), the code would extract the files

from example.zip into a newly created C:\delicious folder.

The extract() method for ZipFile objects will extract a single file from the ZIP file.

Continue the interactive shell example:

>>> exampleZip.extract('spam.txt')

'C:\\spam.txt'

>>> exampleZip.extract('spam.txt', 'C:\\some\\new\\folders')

'C:\\some\\new\\folders\\spam.txt'

>>> exampleZip.close()

The string you pass to extract() must match one of the strings in the list returned

by namelist(). Optionally, you can pass a second argument to extract() to extract the file into

a folder other than the current working directory. If this second argument is a folder that

doesn’t yet exist, Python will create the folder. The value that extract() returns is the absolute

path to which the file was extracted.

Creating and Adding to ZIP Files

To create your own compressed ZIP files, you must open the ZipFile object in write mode by

passing 'w' as the second argument. (This is similar to opening a text file in write mode by

passing 'w' to the open() function.)

When you pass a path to the write() method of a ZipFile object, Python will compress the

file at that path and add it into the ZIP file. The write() method’s first argument is a string of

the filename to add. The second argument is the compression type parameter, which tells the

computer what algorithm it should use to compress the files; you can always just set this

value to zipfile.ZIP_DEFLATED. (This specifies the deflate compression algorithm, which

works well on all types of data.) Enter the following into the interactive shell:

>>> import zipfile

>>> newZip = zipfile.ZipFile('new.zip', 'w')

>>> newZip.write('spam.txt', compress_type=zipfile.ZIP_DEFLATED)

>>> newZip.close()

This code will create a new ZIP file named new.zip that has the compressed contents

of spam.txt.

Keep in mind that, just as with writing to files, write mode will erase all existing contents

of a ZIP file. If you want to simply add files to an existing ZIP file, pass 'a' as the second

argument to zipfile.ZipFile() to open the ZIP file in append mode.

PROJECT: RENAMING FILES WITH AMERICAN-STYLE DATES TO EUROPEAN-STYLE DATES

Say your boss emails you thousands of files with American-style dates (MM-DD-YYYY) in

their names and needs them renamed to European-style dates (DD-MM-YYYY). This boring

task could take all day to do by hand! Let’s write a program to do it instead.

Here’s what the program does:

ADUP/18CS55 Module3

Dept. of CSE

1. It searches all the filenames in the current working directory for American-style dates.

2. When one is found, it renames the file with the month and day swapped to make it European-

style.

This means the code will need to do the following:

1. Create a regex that can identify the text pattern of American-style dates.

2. Call os.listdir() to find all the files in the working directory.

3. Loop over each filename, using the regex to check whether it has a date.

4. If it has a date, rename the file with shutil.move().

For this project, open a new file editor window and save your code as renameDates.py.

Step 1: Create a Regex for American-Style Dates

The first part of the program will need to import the necessary modules and create a regex

that can identify MM-DD-YYYY dates. The to-do comments will remind you what’s left to

write in this program. Typing them as TODO makes them easy to find using Mu

editor’s CTRL-F find feature. Make your code look like the following:

#! python3
renameDates.py - Renames filenames with American MM-DD-YYYY date format

to European DD-MM-YYYY.

➊ import shutil, os, re

Create a regex that matches files with the American date format.

➋ datePattern = re.compile(r"""^(.*?) # all text before the date

((0|1)?\d)- # one or two digits for the month

((0|1|2|3)?\d)- # one or two digits for the day

((19|20)\d\d) # four digits for the year

(.*?)$ # all text after the date

""", re.VERBOSE➌)

TODO: Loop over the files in the working directory.

TODO: Skip files without a date.

TODO: Get the different parts of the filename.

TODO: Form the European-style filename.

TODO: Get the full, absolute file paths.

TODO: Rename the files.

From this chapter, you know the shutil.move() function can be used to rename files: its

arguments are the name of the file to rename and the new filename. Because this function

exists in the shutil module, you must import that module ➊.

ADUP/18CS55 Module3

Dept. of CSE

But before renaming the files, you need to identify which files you want to rename.

Filenames with dates such as spam4-4-1984.txt and 01-03-2014eggs.zip should be renamed,

while filenames without dates such as littlebrother.epub can be ignored.

You can use a regular expression to identify this pattern. After importing the re module at

the top, call re.compile() to create a Regex object ➋. Passing re.VERBOSE for the second

argument ➌ will allow whitespace and comments in the regex string to make it more

readable.

The regular expression string begins with ^(.*?) to match any text at the beginning of the

filename that might come before the date. The ((0|1)?\d) group matches the month. The first

digit can be either 0 or 1, so the regex matches 12 for December but also 02 for February.

This digit is also optional so that the month can be 04 or 4 for April. The group for the day

is ((0|1|2|3)?\d) and follows similar logic; 3, 03, and 31 are all valid numbers for days. (Yes,

this regex will accept some invalid dates such as 4-31-2014, 2-29-2013, and 0-15-2014. Dates

have a lot of thorny special cases that can be easy to miss. But for simplicity, the regex in this

program works well enough.)

While 1885 is a valid year, you can just look for years in the 20th or 21st century. This

will keep your program from accidentally matching nondate filenames with a date-like

format, such as 10-10-1000.txt.

The (.*?)$ part of the regex will match any text that comes after the date.

Step 2: Identify the Date Parts from the Filenames

Next, the program will have to loop over the list of filename strings returned

from os.listdir() and match them against the regex. Any files that do not have a date in them

should be skipped. For filenames that have a date, the matched text will be stored in several

variables. Fill in the first three TODOs in your program with the following code:

#! python3

renameDates.py - Renames filenames with American MM-DD-YYYY date format

to European DD-MM-YYYY.

--snip--

Loop over the files in the working directory.

for amerFilename in os.listdir('.'):

mo = datePattern.search(amerFilename)

Skip files without a date.

➊ if mo == None:

➋ continue

➌ # Get the different parts of the filename.

beforePart = mo.group(1)

monthPart = mo.group(2)

dayPart = mo.group(4)

yearPart = mo.group(6)

afterPart = mo.group(8)

--snip--

ADUP/18CS55 Module3

Dept. of CSE

If the Match object returned from the search() method is None ➊, then the filename

in amerFilename does not match the regular expression. The continue statement ➋ will skip

the rest of the loop and move on to the next filename.

Otherwise, the various strings matched in the regular expression groups are stored in

variables named beforePart, monthPart, dayPart, yearPart, and afterPart ➌. The strings in

these variables will be used to form the European-style filename in the next step.

To keep the group numbers straight, try reading the regex from the beginning, and count

up each time you encounter an opening parenthesis. Without thinking about the code, just

write an outline of the regular expression. This can help you visualize the groups. Here’s an

example:

datePattern = re.compile(r"""^(1) # all text before the date

(2 (3))- # one or two digits for the month

(4 (5))- # one or two digits for the day

(6 (7)) # four digits for the year

(8)$ # all text after the date

""", re.VERBOSE)

Here, the numbers 1 through 8 represent the groups in the regular expression you wrote.

Making an outline of the regular expression, with just the parentheses and group numbers,

can give you a clearer understanding of your regex before you move on with the rest of the

program.

Step 3: Form the New Filename and Rename the Files

As the final step, concatenate the strings in the variables made in the previous step with the

European-style date: the date comes before the month. Fill in the three remaining TODOs in

your program with the following code:

#! python3
renameDates.py - Renames filenames with American MM-DD-YYYY date format # to

European DD-MM-YYYY.

--snip--

Form the European-style filename.

➊ euroFilename = beforePart + dayPart + '-' + monthPart + '-' + yearPart +

afterPart

Get the full, absolute file paths.

absWorkingDir = os.path.abspath('.')

amerFilename = os.path.join(absWorkingDir, amerFilename)

euroFilename = os.path.join(absWorkingDir, euroFilename)

Rename the files.

➋ print(f'Renaming "{amerFilename}" to "{euroFilename}"...')

➌ #shutil.move(amerFilename, euroFilename) # uncomment after testing

ADUP/18CS55 Module3

Dept. of CSE

Store the concatenated string in a variable named euroFilename ➊. Then, pass the original

filename in amerFilename and the new euroFilename variable to the shutil.move() function to

rename the file ➌.

This program has the shutil.move() call commented out and instead prints the filenames

that will be renamed ➋. Running the program like this first can let you double-check that the

files are renamed correctly. Then you can uncomment the shutil.move() call and run the

program again to actually rename the files.

Ideas for Similar Programs

There are many other reasons you might want to rename a large number of files.

 To add a prefix to the start of the filename, such as adding spam_ to

rename eggs.txt to spam_eggs.txt

 To change filenames with European-style dates to American-style dates

 To remove the zeros from files such as spam0042.txt

PROJECT: BACKING UP A FOLDER INTO A ZIP FILE

Say you’re working on a project whose files you keep in a folder named C:\AlsPythonBook.

You’re worried about losing your work, so you’d like to create ZIP file ―snapshots‖ of the

entire folder. You’d like to keep different versions, so you want the ZIP file’s filename to

increment each time it is made; for

example, AlsPythonBook_1.zip, AlsPythonBook_2.zip, AlsPythonBook_3.zip, and so on. You

could do this by hand, but it is rather annoying, and you might accidentally misnumber the

ZIP files’ names. It would be much simpler to run a program that does this boring task for

you.

For this project, open a new file editor window and save it as backupToZip.py.

Step 1: Figure Out the ZIP File’s Name

The code for this program will be placed into a function named backupToZip(). This will

make it easy to copy and paste the function into other Python programs that need this

functionality. At the end of the program, the function will be called to perform the backup.

Make your program look like this:

#! python3
backupToZip.py - Copies an entire folder and its contents into

a ZIP file whose filename increments.

➊ import zipfile, os

def backupToZip(folder):

Back up the entire contents of "folder" into a ZIP file.

folder = os.path.abspath(folder) # make sure folder is absolute

Figure out the filename this code should use based on

what files already exist.

➋ number = 1

➌ while True:

ADUP/18CS55 Module3

Dept. of CSE

zipFilename = os.path.basename(folder) + '_' + str(number) + '.zip'

if not os.path.exists(zipFilename):

break

number = number + 1

➍ # TODO: Create the ZIP file.

TODO: Walk the entire folder tree and compress the files in each folder.

print('Done.')

backupToZip('C:\\delicious')

Do the basics first: add the shebang (#!) line, describe what the program does, and import

the zipfile and os modules ➊.

Define a backupToZip() function that takes just one parameter, folder. This parameter is a

string path to the folder whose contents should be backed up. The function will determine

what filename to use for the ZIP file it will create; then the function will create the file, walk

the folder folder, and add each of the subfolders and files to the ZIP file.

Write TODO comments for these steps in the source code to remind yourself to do them

later ➍.

The first part, naming the ZIP file, uses the base name of the absolute path of folder. If the

folder being backed up is C:\delicious, the ZIP file’s name should be delicious_N.zip,

where N = 1 is the first time you run the program, N = 2 is the second time, and so on.

You can determine what N should be by checking whether delicious_1.zip already exists,

then checking whether delicious_2.zip already exists, and so on. Use a variable

named number for N ➋, and keep incrementing it inside the loop that calls os.path.exists() to

check whether the file exists ➌. The first nonexistent filename found will cause the loop

to break, since it will have found the filename of the new zip.

Step 2: Create the New ZIP File

Next let’s create the ZIP file. Make your program look like the following:

#! python3

backupToZip.py - Copies an entire folder and its contents into

a ZIP file whose filename increments.

--snip--

while True:

zipFilename = os.path.basename(folder) + '_' + str(number) + '.zip'

if not os.path.exists(zipFilename):

break

number = number + 1

Create the ZIP file.

print(f'Creating {zipFilename}...')

➊ backupZip = zipfile.ZipFile(zipFilename, 'w')

TODO: Walk the entire folder tree and compress the files in each folder.

ADUP/18CS55 Module3

Dept. of CSE

print('Done.')

backupToZip('C:\\delicious')

Now that the new ZIP file’s name is stored in the zipFilename variable, you can

call zipfile.ZipFile() to actually create the ZIP file ➊. Be sure to pass 'w' as the second

argument so that the ZIP file is opened in write mode.

Step 3: Walk the Directory Tree and Add to the ZIP File

Now you need to use the os.walk() function to do the work of listing every file in the folder

and its subfolders. Make your program look like the following:

#! python3

backupToZip.py - Copies an entire folder and its contents into

a ZIP file whose filename increments.

--snip--

Walk the entire folder tree and compress the files in each folder.

➊ for foldername, subfolders, filenames in os.walk(folder):

print(f'Adding files in {foldername}...')

Add the current folder to the ZIP file.

➋ backupZip.write(foldername)

Add all the files in this folder to the ZIP file.

➌ for filename in filenames:

newBase = os.path.basename(folder) + '_'

if filename.startswith(newBase) and filename.endswith('.zip'):

continue # don't back up the backup ZIP files

backupZip.write(os.path.join(foldername, filename))

backupZip.close()

print('Done.')

backupToZip('C:\\delicious')

You can use os.walk() in a for loop ➊, and on each iteration it will return the iteration’s

current folder name, the subfolders in that folder, and the filenames in that folder.

In the for loop, the folder is added to the ZIP file ➋. The nested for loop can go through

each filename in the filenames list ➌. Each of these is added to the ZIP file, except for

previously made backup ZIPs.

When you run this program, it will produce output that will look something like this:

Creating delicious_1.zip...

Adding files in C:\delicious...

Adding files in C:\delicious\cats...

Adding files in C:\delicious\waffles...

Adding files in C:\delicious\walnut...

ADUP/18CS55 Module3

Dept. of CSE

Adding files in C:\delicious\walnut\waffles...

Done.

The second time you run it, it will put all the files in C:\delicious into a ZIP file

named delicious_2.zip, and so on.

Ideas for Similar Programs

You can walk a directory tree and add files to compressed ZIP archives in several other

programs. For example, you can write programs that do the following:

 Walk a directory tree and archive just files with certain extensions, such as .txt or .py, and

nothing else.

 Walk a directory tree and archive every file except the .txt and .py ones.

 Find the folder in a directory tree that has the greatest number of files or the folder that uses

the most disk space.

SUMMARY

Even if you are an experienced computer user, you probably handle files manually with the

mouse and keyboard. Modern file explorers make it easy to work with a few files. But

sometimes you’ll need to perform a task that would take hours using your computer’s file

explorer.

The os and shutil modules offer functions for copying, moving, renaming, and deleting

files. When deleting files, you might want to use the send2trash module to move files to the

recycle bin or trash rather than permanently deleting them. And when writing programs that

handle files, it’s a good idea to comment out the code that does the actual

copy/move/rename/delete and add a print() call instead so you can run the program and verify

exactly what it will do.

Often you will need to perform these operations not only on files in one folder but also on

every folder in that folder, every folder in those folders, and so on. The os.walk() function

handles this trek across the folders for you so that you can concentrate on what your program

needs to do with the files in them.

The zipfile module gives you a way of compressing and extracting files in .ZIP archives

through Python. Combined with the file-handling functions of os and shutil, zipfile makes it

easy to package up several files from anywhere on your hard drive. These .ZIP files are much

easier to upload to websites or send as email attachments than many separate files.

Previous chapters of this book have provided source code for you to copy. But when you

write your own programs, they probably won’t come out perfectly the first time. The next

chapter focuses on some Python modules that will help you analyze and debug your programs

so that you can quickly get them working correctly.

PRACTICE QUESTIONS

1. What is the difference between shutil.copy() and shutil.copytree()?

2. What function is used to rename files?

3. What is the difference between the delete functions in the send2trash and shutil modules?

4. ZipFile objects have a close() method just like File objects’ close() method.

What ZipFile method is equivalent to File objects’ open() method?

ADUP/18CS55 Module3

Dept. of CSE

PRACTICE PROJECTS

For practice, write programs to do the following tasks.

Selective Copy

Write a program that walks through a folder tree and searches for files with a certain file

extension (such as .pdf or .jpg). Copy these files from whatever location they are in to a new

folder.

Deleting Unneeded Files

It’s not uncommon for a few unneeded but humongous files or folders to take up the bulk of

the space on your hard drive. If you’re trying to free up room on your computer, you’ll get

the most bang for your buck by deleting the most massive of the unwanted files. But first you

have to find them.

Write a program that walks through a folder tree and searches for exceptionally large files

or folders—say, ones that have a file size of more than 100MB. (Remember that to get a

file’s size, you can use os.path.getsize() from the os module.) Print these files with their

absolute path to the screen.

Filling in the Gaps

Write a program that finds all files with a given prefix, such as spam001.txt, spam002.txt, and

so on, in a single folder and locates any gaps in the numbering (such as if there is

a spam001.txt and spam003.txt but no spam002.txt). Have the program rename all the later

files to close this gap.

As an added challenge, write another program that can insert gaps into numbered files so

that a new file can be added.

ADUP/18CS55 Module4

Dept. of CSE, BRCE

CLASSES AND OBJECTS
Python is an object-oriented programming language, and class is a basis for any object oriented

programming language. Class is a user-defined data type which binds data and functions together

into single entity. Class is just a prototype (or a logical entity/blue print) which will not consume any

memory. An object is an instance of a class and it has physical existence. One can create any number

of objects for a class. A class can have a set of variables (also known as attributes, member

variables) and member functions (also known as methods).

 Programmer-defined Types

A class in Python can be created using a keyword class. Here, we are creating an empty class

without any members by just using the keyword pass within it.

class Point:

pass

print(Point)

The output would be –

<class ' main .Point'>

The term main indicates that the class Point is in the main scope of the current module.

In other words, this class is at the top level while executing the program.

Now, a user-defined data type Point got created, and this can be used to create any number of objects

of this class. Observe the following statements –

p=Point()

Now, a reference (for easy understanding, treat reference as a pointer) to Point object is created and

is returned.

This returned reference is assigned to the object p.

The process of creating a new object is called as instantiation and the object is instance of a class.

When we print an object, Python tells which class it belongs to and where it is stored in the memory.

print(p)

The output would be –

< main .Point object at 0x003C1BF0>

ADUP/18CS55 Module4

Dept. of CSE, BRCE

The output displays the address (in hexadecimal format) of the object in the memory. It is now clear

that, the object occupies the physical space, whereas the class does not.

 Attributes

An object can contain named elements known as attributes. One can assign values to these attributes

using dot operator. For example, keeping coordinate points in mind, we can assign two attributes x

and y for the object p of a class Point as below –

p.x =10.0

p.y =20.0

A state diagram that shows an object and its attributes is called as object diagram. For the object p,

the object diagram is shown in Figure 4.1.

Point

p
x 10.0

y 20.0

Figure 4.1 Object Diagram

The diagram indicates that a variable (i.e. object) p refers to a Point object, which contains two

attributes. Each attributes refers to a floating point number.

One can access attributes of an object as shown –

>>> print(p.x)

>>> 10.0

>>> print(p.y)

>>> 20.0

Here, p.x means “Go to the object p refers to and get the value of x”. Attributes of an object can be

assigned to other variables –

>>> a= p.x

>>> print(a)

10.0

Here, the variable x is nothing to do with attribute x. There will not be any name conflict between

normal program variable and attributes of an object.

A complete program: Write a class Point representing a point on coordinate system. Implement

following functions –

A function read_point() to receive x and y attributes of a Point object as user input.

ADUP/18CS55 Module4

Dept. of CSE, BRCE

A function distance() which takes two objects of Point class as arguments and computes the

Euclidean distance between them.

A function print_point() to display one point in the form of ordered-pair.

import math

class Point:

‖‖‖This is a class Point representing a coordinate point‖‖‖

def readpoint(p):

p.x=int(input("x coordinate:"))

p.y=int(input("y coordinate:"))

def print_point(p):

print("(%g,%g)"%(p.x, p.y))

def distance(p1,p2):

d=math.sqrt((p1.x-p2.x)**2+(p1.y-p2.y)**2)

return d

p1=Point()

print("Enter First point:")

p1.readpoint()

p2=Point()

print("Enter Second point:")

p2.readpoint()

dist=p1.distance(p2)

print("First point is:")

p1.print_point()

print("Second point is:")

p2.print_point()

print("Distance is: %g" %(p1.distance(p2)))

The sample output of above program would be –

Enter First point:

x coordinate:10
y coordinate:20 Enter

Second point:

x coordinate:3

y coordinate:5

First point is: (10,20)

ADUP/18CS55 Module4

Dept. of CSE, BRCE

Second point is:(3,5)

Distance is: 16.5529

Let us discuss the working of above program thoroughly –

The class Point contains a string enclosed within 3 double-quotes. This is known as

docstring. Usually, a string literal is written within 3 consecutive double-quotes inside a

class, module or function definition. It is an important part of documentation and is to help

someone to understand the purpose of the said class/module/function. The docstring becomes

a value for the special attribute viz. doc available for any class (and objects of that

class). To get the value of docstring associated with a class, one can use the statements like –

>>> print(Point. doc)

This is a class Point representing a coordinate point

>>> print(p1. doc)

This is a class Point representing a coordinate point

Note that, you need to type two underscores, then the word doc and again two underscores.

In the above program, there is no need of docstring and we would have just used pass to

indicate an empty class. But, it is better to understand the professional way of writing user-

defined types and hence, introduced docstring.

The function read_point() take one argument of type Point object. When we use the

statements like,

read_point(p1)

the parameter p of this function will act as an alias for the argument p1. Hence, the

modification done to the alias p reflects the original argument p1. With the help of this

function, we are instructing Python that the object p1 has two attributes x and y.

The function print_point() also takes one argument and with the help of format-strings, we

are printing the attributes x and y of the Point object as an ordered-pair (x,y).

As we know, the Euclidean distance between two points (x1,y1) and (x2,y2) is

In this program, we have Point objects as (p1.x, p1.y) and (p2.x, p2.y). Apply the formula on

these points by passing objects p1 and p2 as parameters to the function distance(). And then

return the result.

x1 x2 2 y1 y2 2

ADUP/18CS55 Module4

Dept. of CSE, BRCE

Thus, the above program gives an idea of defining a class, instantiating objects, creating attributes,

defining functions that takes objects as arguments and finally, calling (or invoking) such functions

whenever and wherever necessary.

NOTE: User-defined classes in Python have two types of attributes viz. class attributes and

instance attributes. Class attributes are defined inside the class (usually, immediately after class

header). They are common to all the objects of that class. That is, they are shared by all the objects

created from that class. But, instance attributes defined for individual objects. They are available

only for that instance (or object). Attributes of one instance are not available for another instance of

the same class. For example, consider the class Point as discussed earlier –

class Point:

pass

p1= Point() #first object of the class

p1.x=10.0 #attributes for p1

p1.y=20.0

print(p1.x, p1.y) #prints 10.0 20.0

p2= Point() #second object of the class

print(p2.x) #displays error as below

AttributeError: 'Point' object has no attribute 'x'

This clearly indicates that the attributes x and y created are available only for the object p1, but not

for p2. Thus, x and y are instance attributes but not class attributes.

We will discuss class attributes late in-detail. But, for the understanding purpose, observe the

following example –

class Point:

x=2

y=3

p1=Point() #first object of the class

print(p1.x, p1.y) # prints 2 3

p2=Point() #second object of the class

print(p2.x, p2.y) # prints 2 3

Here, the attributes x and y are defined inside the definition of the class Point itself.

Hence, they are available to all the objects of that class.

ADUP/18CS55 Module4

Dept. of CSE, BRCE

 Rectangles

It is possible to make an object of one class as an attribute to other class. To illustrate this, consider
an example of creating a class called as Rectangle. A rectangle can be created using any of the
following data –

By knowing width and height of a rectangle and one corner point (ideally, a bottom-left

corner) in a coordinate system

By knowing two opposite corner points

Let us consider the first technique and implement the task: Write a class Rectangle containing

numeric attributes width and height. This class should contain another attribute corner which is an

instance of another class Point. Implement following functions –

A function to print corner point as an ordered-pair

A function find_center() to compute center point of the rectangle A

function resize() to modify the size of rectangle

The program is as given below –

class Point:

""" This is a class Point representing coordinate point """

class Rectangle:

""" This is a class Rectangle. Attributes: width, height and Corner Point """

def find_center(rect):

p=Point()

p.x = rect.corner.x + rect.width/2

p.y = rect.corner.y + rect.height/2

return p

def resize(rect, w, h):

rect.width +=w

rect.height +=h

def print_point(p):

print("(%g,%g)"%(p.x, p.y))

box=Rectangle() #create Rectangle object

box.corner=Point() #define an attribute corner for box

box.width=100 #set attribute width to box

box.height=200 #set attribute height to box

box.corner.x=0 #corner itself has two attributes x and y

box.corner.y=0 #initialize x and y to 0

ADUP/18CS55 Module4

Dept. of CSE, BRCE

print("Original Rectangle is:")

print("width=%g, height=%g"%(box.width, box.height))

center=find_center(box)

print("The center of rectangle is:")

print_point(center)

resize(box,50,70)

print("Rectangle after resize:")

print("width=%g, height=%g"%(box.width, box.height))

center=find_center(box)

print("The center of resized rectangle is:")

print_point(center)

A sample output would be:

Original Rectangle is: width=100, height=200

The center of rectangle is: (50,100)

Rectangle after resize: width=150, height=270
The center of resized rectangle is: (75,135)

The working of above program is explained in detail here –

Two classes Point and Rectangle have been created with suitable docstrings. As of now, they

do not contain any class-level attributes.

The following statement instantiates an object of Rectangle class.

box=Rectangle()

The statement

box.corner=Point()

indicates that corner is an attribute for the object box and this attribute itself is an object of
the class Point. The following statements indicate that the object box has two more attributes
–

box.width=100 #give any numeric value

box.height=200 #give any numeric value

In this program, we are treating the corner point as the origin in coordinate system and hence

the following assignments –

box.corner.x=0

box.corner.y=0

(Note that, instead of origin, any other location in the coordinate system can be given as

corner point.)

Based on all above statements, an object diagram can be drawn as –

ADUP/18CS55 Module4

Dept. of CSE, BRCE

Rectangle

box
width 100

Point
height 200

 x 0

 corner y 0

The expression box.corner.x means, ―Go to the object box refers to and select the attribute

named corner; then go to that object and select the attribute named x.‖

The function find_center() takes an object rect as an argument. So, when a call is made using

the statement –

center=find_center(box)

the object rect acts as an alias for the argument box.

A local object p of type Point has been created inside this function. The attributes of p are x

and y, which takes the values as the coordinates of center point of rectangle. Center of a

rectangle can be computed with the help of following diagram.

Half of height

(x+ half of width, y+ half of height)

(x,y)

The function find_center() returns the computed center point. Note that, the return value of a

function here is an instance of some class. That is, one can have an instance as return values

from a function.

The function resize() takes three arguments: rect – an instance of Rectangle class and two

numeric variables w and h. The values w and h are added to existing attributes width and

height. This clearly shows that objects are mutable. State of an object can be changed by

modifying any of its attributes. When this function is called with a statement –

resize(box,50,70)

the rect acts as an alias for box. Hence, width and height modified within the function will

reflect the original object box.

Half of width

ADUP/18CS55 Module4

Dept. of CSE, BRCE

Thus, the above program illustrates the concepts: object of one class is made as attribute for object

of another class, returning objects from functions and objects are mutable.

 Copying

An object will be aliased whenever an object is assigned to another object of same class. This may
happen in following situations –

Direct object assignment (like p2=p1)

When an object is passed as an argument to a function

When an object is returned from a function

The last two cases have been understood from the two programs in previous sections. Let us

understand the concept of aliasing more in detail using the following program –

>>> class Point: pass

>>> p1=Point()

>>> p1.x=10

>>> p1.y=20

>>> p2=p1

>>> print(p1)
< main .Point object at 0x01581BF0>

>>> print(p2)

< main .Point object at 0x01581BF0>

Observe that both p1 and p2 objects have same physical memory. It is clear now that the object p2 is

an alias for p1. So, we can draw the object diagram as below –

p1
x 10

p2
y 20

Hence, if we check for equality and identity of these two objects, we will get following result.

>>> p1 is p2

True

>>> p1==p2

True

But, the aliasing is not good always. For example, we may need to create a new object using an

existing object such that – the new object should have a different physical memory, but it must have

same attribute (and their values) as that of existing object. Diagrammatically, we need something as

below –

ADUP/18CS55 Module4

Dept. of CSE, BRCE

p1
x 10 x 10

p2
y 20 y 20

In short, we need a copy of an object, but not an alias. To do this, Python provides a module called

copy and a method called copy(). Consider the below given program to understand the concept.

>>> class Point:

pass

>>> p1=Point()

>>> p1.x=10

>>> p1.y=20

>>> import copy #import module copy

>>> p3=copy.copy(p1) #use the method copy()

>>> print(p1)
< main .Point object at 0x01581BF0>

>>> print(p3)
< main .Point object at 0x02344A50>

>>> print(p3.x,p3.y) 10 20

Observe that the physical address of the objects p1 and p3 are now different. But, values of attributes

x and y are same. Now, use the following statements –

>>> p1 is p3

False

>>> p1 == p3

False

Here, the is operator gives the result as False for the obvious reason of p1 and p3 are being two

different entities on the memory. But, why == operator is generating False as the result, though the

contents of two objects are same? The reason is – p1 and p3 are the objects of user-defined type.

And, Python cannot understand the meaning of equality on the new data type. The default behavior

of equality (==) is identity (is operator) itself. Hence, Python applies this default behavior on p1 ==

p3 and results in False.

(NOTE: If we need to define the meaning of equality (==) operator explicitly on user-defined data

types (i.e. on class objects), then we need to override the method eq () inside the class. This will

be discussed later in detail.)

ADUP/18CS55 Module4

Dept. of CSE, BRCE

The copy() method of copy module duplicates the object. The content (i.e. attributes) of one object is

copied into another object as we have discussed till now. But, when an object itself is an attribute

inside another object, the duplication will result in a strange manner. To understand this concept, try

to copy Rectangle object (created in previous section) as given below –

import copy

class Point:
""" This is a class Point representing coordinate

point

"""

class Rectangle:

""" This is a class Rectangle.

Attributes: width, height and Corner Point

"""

box1=Rectangle()

box1.corner=Point()

box1.width=100

box1.height=200

box1.corner.x=0

box1.corner.y=0

box2=copy.copy(box1)

print(box1 is box2) #prints False

print(box1.corner is box2.corner) #prints True

Now, the question is – why box1.corner and box2.corner are same objects, when box1 and box2

are different? Whenever the statement

box2=copy.copy(box1)

is executed, the contents of all the attributes of box1 object are copied into the respective attributes

of box2 object. That is, box1.width is copied into box2.width, box1.height is copied into

box2.height. Similarly, box1.corner is copied into box2.corner. Now, recollect the fact that corner is

not exactly the object itself, but it is a reference to the object of type Point (Read the discussion done

for Figure 4.1 at the beginning of this Chapter). Hence, the value of reference (that is, the physical

address) stored in box1.corner is copied into box2.corner. Thus, the physical object to which

box1.corner and box2.corner are pointing is only one. This type of copying the objects is known as

shallow copy. To understand this behavior, observe the following diagram –

ADUP/18CS55 Module4

Dept. of CSE, BRCE

Rectangle Rectangle

box1 width 100 width 100 box2

 height 200 Point height 200

 x 0

 corner y 0 corner

Now, the attributes width and height for two objects box1 and box2 are independent. Whereas, the

attribute corner is shared by both the objects. Thus, any modification done to box1.corner will reflect

box2.corner as well. Obviously, we don‘t want this to happen, whenever we create duplicate objects.

That is, we want two independent physical objects. Python provides a method deepcopy() for doing

this task. This method copies not only the object but also the objects it refers to, and the objects they

refer to, and so on.

box3=copy.deepcopy(box1)

print(box1 is box3) #prints False

print(box1.corner is box3.corner) #prints False

Thus, the objects box1 and box3 are now completely independent.

 Debugging

While dealing with classes and objects, we may encounter different types of errors. For example, if

we try to access an attribute which is not there for the object, we will get AttributeError. For

example –

>>> p= Point()

>>> p.x = 10

>>> p.y = 20
>>> print(p.z)

AttributeError: 'Point' object has no attribute 'z'

To avoid such error, it is better to enclose such codes within try/except as given below – try:

z = p.x

except AttributeError:
z = 0

When we are not sure, which type of object it is, then we can use type() as –

>>> type(box1)

<class ' main .Rectangle'>

ADUP/18CS55 Module4

Dept. of CSE, BRCE

Another method isinstance() helps to check whether an object is an instance of a particular class –

>>> isinstance(box1,Rectangle) True

When we are not sure whether an object has a particular attribute or not, use a function hasattr() –

>>> hasattr(box1, 'width') True

Observe the string notation for second argument of the function hasattr(). Though the attribute width

is basically numeric, while giving it as an argument to function hasattr(), it must be enclosed within

quotes.

 CLASSES AND FUNCTIONS

Though Python is object oriented programming languages, it is possible to use it as functional

programming. There are two types of functions viz. pure functions and modifiers. A pure function

takes objects as arguments and does some work without modifying any of the original argument. On
the other hand, as the name suggests, modifier function modifies the original argument.

In practical applications, the development of a program will follow a technique called as prototype

and patch. That is, solution to a complex problem starts with simple prototype and incrementally

dealing with the complications.

 Pure Functions

To understand the concept of pure functions, let us consider an example of creating a class called

Time. An object of class Time contains hour, minutes and seconds as attributes. Write a function to

print time in HH:MM:SS format and another function to add two time objects. Note that, adding two

time objects should yield proper result and hence we need to check whether number of seconds

exceeds 60, minutes exceeds 60 etc, and take appropriate action.

class Time:

"""Represents the time of a day Attributes: hour,

minute, second """

def printTime(t):

print("%.2d:%.2d:%.2d"%(t.hour,t.minute,t.second))

def add_time(t1,t2):

sum=Time()

sum.hour = t1.hour + t2.hour

sum.minute = t1.minute + t2.minute

sum.second = t1.second + t2.second

ADUP/18CS55 Module4

Dept. of CSE, BRCE

if sum.second >= 60:

sum.second -= 60

sum.minute += 1
if sum.minute >= 60:

sum.minute -= 60

sum.hour += 1

return sum

t1=Time()

t1.hour=10

t1.minute=34

t1.second=25

print("Time1 is:")

printTime(t1)

t2=Time()

t2.hour=2

t2.minute=12

t2.second=41

print("Time2 is :")

printTime(t2)

t3=add_time(t1,t2)

print("After adding two time objects:")

printTime(t3)

The output of this program would be –

Time1 is: 10:34:25

Time2 is : 02:12:41
After adding two time objects: 12:47:06

Here, the function add_ time() takes two arguments of type Time, and returns a Time object,

whereas, it is not modifying contents of its arguments t1 and t2. Such functions are called as pure

functions.

 Modifiers

Sometimes, it is necessary to modify the underlying argument so as to reflect the caller. That is,

arguments have to be modified inside a function and these modifications should be available to the

caller. The functions that perform such modifications are known as modifier function. Assume that,

we need to add few seconds to a time object, and get a new time. Then, we can write a function as

below –

ADUP/18CS55 Module4

Dept. of CSE, BRCE

def increment(t, seconds):

t.second += seconds

while t.second >= 60:

t.second -= 60

t.minute += 1

while t.minute >= 60:

t.minute -= 60

t.hour += 1

In this function, we will initially add the argument seconds to t.second. Now, there is a chance that

t.second is exceeding 60. So, we will increment minute counter till t.second becomes lesser than 60.

Similarly, till the t.minute becomes lesser than 60, we will decrement minute counter. Note that, the

modification is done on the argument t itself. Thus, the above function is a modifier.

 Prototyping v/s Planning

Whenever we do not know the complete problem statement, we may write the program initially, and

then keep of modifying it as and when requirement (problem definition) changes. This methodology
is known as prototype and patch. That is, first design the prototype based on the information

available and then perform patch-work as and when extra information is gathered. But, this type of

incremental development may end-up in unnecessary code, with many special cases and it may be

unreliable too.

An alternative is designed development, in which high-level insight into the problem can make the

programming much easier. For example, if we consider the problem of adding two time objects,

adding seconds to time object etc. as a problem involving numbers with base 60 (as every hour is 60

minutes and every minute is 60 seconds), then our code can be improved. Such improved versions

are discussed later in this chapter.

 CLASSES AND METHODS

The classes that have been considered till now were just empty classes without having any

definition. But, in a true object oriented programming, a class contains class-level attributes,

instance-level attributes, methods etc. There will be a tight relationship between the object of the

class and the function that operate on those objects. Hence, the object oriented nature of Python
classes will be discussed here.

 Object-Oriented Features

As an object oriented programming language, Python possess following characteristics:

 Programs include class and method definitions.

 Most of the computation is expressed in terms of operations on objects.

 Objects often represent things in the real world, and methods often correspond to the ways

objects in the real world interact.

To establish relationship between the object of the class and a function, we must define a function as

a member of the class. A function which is associated with a particular class is known as a method.

Methods are semantically the same as functions, but there are two syntactic differences:

Methods are defined inside a class definition in order to make the relationship between the

class and the method explicit.

ADUP/18CS55 Module4

Dept. of CSE, BRCE

The syntax for invoking a method is different from the syntax for calling a function.

Now onwards, we will discuss about classes and methods.

Printing objects

we defined a class named Time and wrote a function named print_time:

class Time:

"""Represents the time of day."""

def print_time(time):

print('%.2d:%.2d:%.2d' % (time.hour, time.minute, time.second))

To call this function, you have to pass a Time object as an argument:

>>> start = Time()

>>> start.hour = 9

>>> start.minute = 45

>>> start.second = 00

>>> print_time(start)

09:45:00

To make print_time a method, all we have to do is move the function definition inside the

class definition. Notice the change in indentation.

class Time:

def print_time(time):

print('%.2d:%.2d:%.2d' % (time.hour, time.minute, time.second))

Now there are two ways to call print_time. The first (and less common) way is to use function

syntax:

>>> Time.print_time(start)

09:45:00

In this use of dot notation, Time is the name of the class, and print_time is the name of the method.

start is passed as a parameter.

The second (and more concise) way is to use method syntax:

>>> start.print_time()

09:45:00

In this use of dot notation, print_time is the name of the method (again), and start is the object the

method is invoked on, which is called the subject. Just as the subject of a sentence is what the

sentence is about, the subject of a method invocation is what the method is about.

Inside the method, the subject is assigned to the first parameter, so in this case start is assigned to

time.

By convention, the first parameter of a method is called self, so it would be more common to write

print_time like this:

class Time:

def print_time(self):

print('%.2d:%.2d:%.2d' % (self.hour, self.minute, self.second))

The reason for this convention is an implicit metaphor:

• The syntax for a function call, print_time(start) , suggests that the function is the

ADUP/18CS55 Module4

Dept. of CSE, BRCE

active agent. It says something like, ―Hey print_time! Here‘s an object for you to

print.‖

• In object-oriented programming, the objects are the active agents. A method invoca-tion

like start.print_time() says ―Hey start! Please print yourself.‖

This change in perspective might be more polite, but it is not obvious that it is useful. In the

examples we have seen so far, it may not be. But sometimes shifting responsibility from the

functions onto the objects makes it possible to write more versatile functions (or methods), and

makes it easier to maintain and reuse code.

As an exercise, rewrite time_to_int (from Section 16.4) as a method. You might be tempted to

rewrite int_to_time as a method, too, but that doesn‘t really make sense because there would be no

object to invoke it on.

Another example

Here‘s a version of increment (from Section 16.3) rewritten as a method:

inside class Time:

def increment(self, seconds):

seconds += self.time_to_int()

return int_to_time(seconds)

This version assumes that time_to_int is written as a method. Also, note that it is a pure function, not

a modifier.

Here‘s how you would invoke increment:

>>> start.print_time()

09:45:00

>>> end = start.increment(1337)

>>> end.print_time()

10:07:17

The subject, start, gets assigned to the first parameter, self. The argument, 1337, gets assigned to the

second parameter, seconds.

This mechanism can be confusing, especially if you make an error. For example, if you invoke

increment with two arguments, you get:

>>> end = start.increment(1337, 460)

TypeError: increment() takes 2 positional arguments but 3 were given

The error message is initially confusing, because there are only two arguments in parentheses.

But the subject is also considered an argument, so all together that‘s three.

By the way, a positional argument is an argument that doesn‘t have a parameter name;

that is, it is not a keyword argument. In this function call:

sketch(parrot, cage, dead=True)

parrot and cage are positional, and dead is a keyword argument.

A more complicated example

Rewriting is_after (from Section 16.1) is slightly more complicated because it takes two Time

objects as parameters. In this case it is conventional to name the first parameter self and the

second parameter other:

inside class Time:

def is_after(self, other):

ADUP/18CS55 Module4

Dept. of CSE, BRCE

return self.time_to_int() > other.time_to_int()

To use this method, you have to invoke it on one object and pass the other as an argument:

>>> end.is_after(start)

True

One nice thing about this syntax is that it almost reads like English: ―end is after start?‖

The init () Method

(A method init () has to be written with two underscores before and after the word init)

Python provides a special method called as init () which is similar to constructor method in other

programming languages like C++/Java. The term init indicates initialization. As the name suggests,

this method is invoked automatically when the object of a class is created. Consider the example

given here –

import math

class Point:

def init (self,a,b):

self.x=a

self.y=b

def dist(self,p2):

d=math.sqrt((self.x-p2.x)**2 + (self.y-p2.y)**2)

return d

def str (self):

return "(%d,%d)"%(self.x, self.y)

print("The distance is:",d)

The sample output is –

P1 is: (10,20)

P2 is: (4,5)

Distance is: 16.15549442140351

Let us understand the working of this program and the concepts involved:

Keep in mind that every method of any class must have the first argument as self. The

argument self is a reference to the current object. That is, it is reference to the object which

invoked the method. (Those who know C++, can relate self with this pointer). The object

which invokes a method is also known as subject.

The method init () inside the class is an initialization method, which will be invoked

automatically when the object gets created. When the statement like –

p1=Point(10,20) # init () is called automatically

p2=Point(4,5) # init () is called automatically

print("P1 is:",p1) # str () is called automatically

print("P2 is:",p2) # str () is called automatically

d=p1.dist(p2)

#explicit call

for dist()

ADUP/18CS55 Module4

Dept. of CSE, BRCE

p1=Point(10,20)

is used, the init () method will be called automatically. The internal meaning of the

above line is –

p1. init (10,20)

Here, p1 is the object which is invoking a method. Hence, reference to this object is created

and passed to init () as self. The values 10 and 20 are passed to formal parameters a and

b of init () method. Now, inside init () method, we have statements

self.x=10

self.y=20

This indicates, x and y are instance attributes. The value of x for the object p1 is 10 and, the

value of y for the object p1 is 20.

When we create another object p2, it will have its own set of x and y. That is, memory

locations of instance attributes are different for every object.

Thus, state of the object can be understood by instance attributes.

The method dist() is an ordinary member method of the class Point. As mentioned earlier, its

first argument must be self. Thus, when we make a call as –

d=p1.dist(p2)

a reference to the object p1 is passed as self to dist() method and p2 is passed explicitly as a

second argument. Now, inside the dist()method, we are calculating distance between two

point (Euclidian distance formula is used) objects. Note that, in this method, we cannot use

the name p1, instead we will use self which is a reference (alias) to p1.

The str method

The next method inside the class is str (). It is a special method used for string

representation of user-defined object. Usually, print() is used for printing basic types in

Python. But, user-defined types (class objects) have their own meaning and a way of

representation. To display such types, we can write functions or methods like print_point() as

we did in Section 4.1.2. But, more polymorphic way is to use str () so that, when we

write just print() in the main part of the program, the str () method will be invoked

automatically. Thus, when we use the statement like –

print("P1 is:",p1)

the ordinary print() method will print the portion ―P1 is:‖ and the remaining portion is taken

care by str () method. In fact, str () method will return the string

ADUP/18CS55 Module4

Dept. of CSE, BRCE

format what we have given inside it, and that string will be printed by print() method.

 Operator Overloading

 Ability of an existing operator to work on user-defined data type (class) is known as operator

overloading.

 It is a polymorphic nature of any object oriented programming.

 Basic operators like +, -, * etc. can be overloaded.

 To overload an operator, one needs to write a method within user-defined class.

 Python provides a special set of methods which have to be used for overloading required

operator. The method should consist of the code what the programmer is willing to do with the
operator. Following table shows gives a list of operators and their respective Python methods for

overloading.

 Operator Special Function Operator Special Function

 in Python in Python

 + add () <= le ()

 - sub () >= ge ()

 * mul__() == eq ()

 / truediv () != ne ()

 % mod__() in contains ()

 < lt () len len ()

 > gt () str str__()

Let us consider an example of Point class considered earlier. Using operator overloading, we can try

to add two point objects. Consider the program given below – p3=Point()

class Point:

def init (self,a=0,b=0):

self.x=a

self.y=b

def add (self, p2):

p3=Point()

p3.x=self.x+p2.x

p3.y=self.y+p2.y

return p3

def str (self):

return "(%d,%d)"%(self.x, self.y)

ADUP/18CS55 Module4

Dept. of CSE, BRCE

p1=Point(10,20)

p2=Point(4,5)

print("P1 is:",p1)

print("P2 is:",p2)

p4=p1+p2 #call for add () method print("Sum is:",p4)

#p1. add (p2)

The output would be –

P1 is: (10,20)

P2 is: (4,5)

Sum is: (14,25)

In the above program, when the statement p4 = p1+p2 is used, it invokes a special method add ()

written inside the class. Because, internal meaning of this statement is–

p4 = p1. add (p2)

Here, p1 is the object invoking the method. Hence, self inside add () is the reference (alias) of

p1. And, p2 is passed as argument explicitly.

In the definition of add (), we are creating an object p3 with the statement –

p3=Point()

The object p3 is created without initialization. Whenever we need to create an object with and

without initialization in the same program, we must set arguments of __init () for some default

values. Hence, in the above program arguments a and b of init () are made as default arguments

with values as zero. Thus, x and y attributes of p3 will be now zero. In the add () method, we are

adding respective attributes of self and p2 and storing in p3.x and p3.y. Then the object p3 is

returned. This returned object is received as p4 and is printed.

NOTE that, in a program containing operator overloading, the overloaded operator behaves in a

normal way when basic types are given. That is, in the above program, if we use the statements

m= 3+4

print(m)

it will be usual addition and gives the result as 7. But, when user-defined types are used as operands,

then the overloaded method is invoked.

Let us consider a more complicated program involving overloading. Consider a problem of creating

a class called Time, adding two Time objects, adding a number to Time object etc. that we had

considered in previous section. Here is a complete program with more of OOP concepts.

ADUP/18CS55 Module4

Dept. of CSE, BRCE

class Time:

def init (self, h=0,m=0,s=0):

self.hour=h

self.min=m

self.sec=s

def time_to_int(self):

minute=self.hour*60+self.min

seconds=minute*60+self.sec

return seconds

def int_to_time(self, seconds):

t=Time()

minutes, t.sec=divmod(seconds,60)

t.hour, t.min=divmod(minutes,60)

return t

def str (self):

return "%.2d:%.2d:%.2d"%(self.hour,self.min,self.sec)

def eq (self,t):

return self.hour==t.hour and self.min==t.min and self.sec==t.sec

def add (self,t):

if isinstance(t, Time):

return self.addTime(t)

else:
return self.increment(t)

def addTime(self, t):

seconds=self.time_to_int()+t.time_to_int()

return self.int_to_time(seconds)

def increment(self, seconds): seconds +=

self.time_to_int() return self.int_to_time(seconds)

def radd (self,t):

return self. add (t)

T1=Time(3,40)

T2=Time(5,45)

print("T1 is:",T1)

print("T2 is:",T2) #call for eq__()

print("Whether T1 is same as T2?",T1==T2)

T3=T1+T2 #call for add ()

print("T1+T2 is:",T3)

T4=T1+75

print("T1+75=",T4)

#call for add ()

T5=130+T1

print("130+T1=",T5) #call for radd ()

ADUP/18CS55 Module4

Dept. of CSE, BRCE

T6=sum([T1,T2,T3,T4])

print("Using sum([T1,T2,T3,T4]):",T6)

The output would be –

T1 is: 03:40:00

T2 is: 05:45:00

Whether T1 is same as T2? False

T1+T2 is: 09:25:00

T1+75= 03:41:15
130+T1= 03:42:10

Using sum([T1,T2,T3,T4]): 22:31:15

Working of above program is explained hereunder –

The class Time has init () method for initialization of instance attributes hour, min and

sec. The default values of all these are being zero.

The method time_to_int() is used convert a Time object (hours, min and sec) into single
integer representing time in number of seconds.

The method int_to_time() is written to convert the argument seconds into time object in the

form of hours, min and sec. The built-in method divmod() gives the quotient as well as

remainder after dividing first argument by second argument given to it.

Special method eq () is for overloading equality (==) operator. We can say one Time

object is equal to the other Time object if underlying hours, minutes and seconds are equal

respectively. Thus, we are comparing these instance attributes individually and returning

either True of False.

When we try to perform addition, there are 3 cases –

o Adding two time objects like T3=T1+T2.

o Adding integer to Time object like T4=T1+75

o Adding Time object to an integer like T5=130+T1

Each of these cases requires different logic. When first two cases are considered, the first argument will

be T1 and hence self will be created and passed to add () method. Inside this method, we will check

the type of second argument using isinstance() method. If the second argument is Time object, then we

call addTime() method. In this method, we will first convert both Time objects to integer (seconds) and

then the resulting sum into Time object again. So, we make use time_to_int() and int_to_time() here.

When the 2
nd

argument is an integer, it is obvious that it is number of seconds. Hence, we need to call

increment() method.

Thus, based on the type of argument received in a method, we take appropriate action. This is known

as type-based dispatch.

In the 3
rd

case like T5=130+T1, Python tries to convert first argument 130 into self, which is not

possible. Hence, there will be an error. This indicates that for Python, T1+5 is not same as 5+T1

(Commutative law doesn‘t hold good!!). To avoid the possible error, we need to implement right-

side addition method radd (). Inside this method, we can call overloaded method add ().

The beauty of Python lies in surprising the programmer with more facilities!! As we have

implemented add () method (that is, overloading of + operator), the built-in sum() will is capable

of adding multiple objects given in a sequence. This is due to Polymorphism in Python. Consider a

list containing Time objects, and then call sum() on that list as –

T6=sum([T1,T2,T3,T4])

The sum() internally calls add () method multiple times and hence gives the appropriate result.

Note down the square-brackets used to combine Time objects as a list and then passing it to sum().

ADUP/18CS55 Module4

Dept. of CSE, BRCE

Thus, the program given here depicts many features of OOP concepts.

Inheritance
Inheritance is an object oriented programming language feature. Inheritance is the ability to define a

new class that is a modified version of an existing class.

The benefits of inheritance are:

1. It represents real-world relationships well.

2. It provides reusability of a code. We don‘t have to write the same code again and again.

Also, it allows us to add more features to a class without modifying it.

3. It is transitive in nature, which means that if class B inherits from another class A, then all

the subclasses of B would automatically inherit from class A.

Card objects

There are fifty-two cards in a deck, each of which belongs to one of four suits and one of thirteen

ranks. The suits are Spades, Hearts, Diamonds, and Clubs (in descending order in bridge). The ranks

re Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King. Depending on the game that you are playing,

an Ace may be higher than King or lower than 2. use integers to encode the ranks and suits. In this

context, ―encode‖ means that we are going to define a mapping between numbers and suits, or

between numbers and ranks. This kind of encoding is not meant to be a secret (that would be

―encryption‖).

For example, this table shows the suits and the corresponding integer codes:

Spades - 3

Hearts - 2

Diamonds – 1

Clubs – 0

This code makes it easy to compare cards; because higher suits map to higher numbers, we can

compare suits by comparing their codes.

The class definition for Card looks like this:

class Card:

"""Represents a standard playing card."""

def init (self, suit=0, rank=2):

self.suit = suit

self.rank = rank

ADUP/18CS55 Module4

Dept. of CSE, BRCE

the init method takes an optional parameter for each attribute. The default card is the 2 of

Clubs.

To create a Card, you call Card with the suit and rank of the card you want.

queen_of_diamonds = Card(1, 12)

Class attributes

In order to print Card objects in a way that people can easily read, we need a mapping from the

integer codes to the corresponding ranks and suits. A natural way to do that is with lists of strings.

We assign these lists to class attributes:

inside class Card:

class Card:

suit_names = ['Clubs', 'Diamonds', 'Hearts', 'Spades']

rank_names = [None, 'Ace', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'Jack', 'Queen', 'King']

def str (self):

return '%s of %s' % (Card.rank_names[self.rank], Card.suit_names[self.suit])

Variables like suit_names and rank_names, which are defined inside a class but outside of any

method, are called class attributes because they are associated with the class object Card.

This term distinguishes them from variables like suit and rank, which are called instance attributes

because they are associated with a particular instance.

Both kinds of attribute are accessed using dot notation.

For example, in str , self, Card is a class object, and Card.rank_names is a list of strings

associated with the class.

Every card has its own suit and rank, but there is only one copy of suit_names and rank_names.

Putting it all together, the expression Card.rank_names[self.rank] means ―use the attribute rank from

the object self as an index into the list rank_names from the class Card, and select the appropriate

string.‖

The first element of rank_names is None because there is no card with rank zero. By including None

as a place-keeper, we get a mapping with the nice property that the index 2 maps to the string '2', and

so on. To avoid this tweak, we could have used a dictionary instead of a list.

With the methods we have so far, we can create and print cards:

>>> card1 = Card(2, 11)

>>> print(card1)

Jack of Hearts

Figure 18.1 is a diagram of the Card class object and one Card instance. Card is a class object; its

type is type. card1 is an instance of Card, so its type is Card.

Comparing cards

ADUP/18CS55 Module4

Dept. of CSE, BRCE

For built-in types, there are relational operators (<, >, ==, etc.) that compare values and determine

when one is greater than, less than, or equal to another. For programmer-defined types, we can

override the behavior of the built-in operators by providing a method named lt , which stands for

―less than‖. lt takes two parameters, self and other, and returns True if self is strictly less than

other.

The correct ordering for cards is not obvious.

For example, which is better, the 3 of Clubs or the 2 of Diamonds? One has a higher rank, but the

other has a higher suit.

In order to compare cards, you have to decide whether rank or suit is more important.

The answer might depend on what game you are playing, but to keep things simple, we‘ll make the

arbitrary choice that suit is more important, so all of the Spades outrank all of the Diamonds, and so

on.

With that decided, we can write lt :

inside class Card:

class Card:

def lt (self, other):

check the suits

if self.suit < other.suit: return True

if self.suit > other.suit: return False

suits are the same... check ranks

return self.rank < other.rank

You can write this more concisely using tuple comparison:

inside class Card:

class Card:

def lt (self, other):

t1 = self.suit, self.rank

t2 = other.suit, other.rank

return t1 < t2

As an exercise, write an lt method for Time objects. You can use tuple comparison, but you also

might consider comparing integers.

Decks

Now that we have Cards, the next step is to define Decks.

Since a deck is made up of cards, it is natural for each Deck to contain a list of cards as an attribute.

The following is a class definition for Deck. The init method creates the attribute cards and generates

the standard set of fifty-two cards:

class Deck:

def init (self):

self.cards = []

for suit in range(4):

for rank in range(1, 14):

card = Card(suit, rank)

self.cards.append(card)

The easiest way to populate the deck is with a nested loop. The outer loop enumerates the suits from

0 to 3. The inner loop enumerates the ranks from 1 to 13.

Each iteration creates a new Card with the current suit and rank, and appends it to self.cards.

ADUP/18CS55 Module4

Dept. of CSE, BRCE

Printing the deck

Here is a str method for Deck:

#inside class Deck:

class Card:

def str (self):

res = []

for card in self.cards:

res.append(str(card))

return '\n'.join(res)

This method demonstrates an efficient way to accumulate a large string: building a list of strings and

then using the string method join.

The built-in function str invokes the str

representation.

method on each card and returns the string

Since we invoke join on a newline character, the cards are separated by newlines. Here‘s what the

result looks like:

>>> deck = Deck()

>>> print(deck)

O/P

Ace of Clubs

2 of Clubs

3 of Clubs

...

10 of Spades

Jack of Spades

Queen of Spades

King of Spades

Even though the result appears on 52 lines, it is one long string that contains newlines.

Add, remove, shuffle and sort

To deal cards, we would like a method that removes a card from the deck and returns it.

The list method pop provides a convenient way to do that:

#inside class Deck:

class Deck:

def pop_card(self):

return self.cards.pop()

Since pop removes the last card in the list, we are dealing from the bottom of the deck.

To add a card, we can use the list method append:

#inside class Deck:

class Deck:

def add_card(self, card):

self.cards.append(card)

A method like this that uses another method without doing much work is sometimes called a veneer.

The metaphor comes from woodworking, where a veneer is a thin layer of good quality wood glued

to the surface of a cheaper piece of wood to improve the appearance.

In this case add_card is a ―thin‖ method that expresses a list operation in terms appropriate for decks.

It improves the appearance, or interface, of the implementation.

ADUP/18CS55 Module4

Dept. of CSE, BRCE

As another example, we can write a Deck method named shuffle using the function shuffle from the

random module:

import random

inside class Deck:

class Deck:

def shuffle(self):

random.shuffle(self.cards)

Don‘t forget to import random.

As an exercise, write a Deck method named sort that uses the list method sort to sort the cards in a

Deck. sort uses the lt__ method we defined to determine the order.

Inheritance

Inheritance is the ability to define a new class that is a modified version of an existing class.

As an example, let‘s say we want a class to represent a ―hand‖, that is, the cards held by one player.

A hand is similar to a deck: both are made up of a collection of cards, and both require operations

like adding and removing cards.

A hand is also different from a deck; there are operations we want for hands that don‘t make sense

for a deck.

For example, in poker we might compare two hands to see which one wins.

In bridge, we might compute a score for a hand in order to make a bid.

This relationship between classes—similar, but different—lends itself to inheritance.

To define a new class that inherits from an existing class, you put the name of the existing class in

parentheses:

Syntax:

class classname(base class):

class Hand(Deck):

"""Represents a hand of playing cards."""

This definition indicates that Hand inherits from Deck; that means we can use methods like

pop_card and add_card for Hands as well as Decks.

When a new class inherits from an existing one, the existing one is called the parent and the new

class is called the child.

In this example, Hand inherits init from Deck, but it doesn‘t really do what we want: instead of

populating the hand with 52 new cards, the init method for Hands should initialize cards with an

empty list.

If we provide an init method in the Hand class, it overrides the one in the Deck class:

inside class Hand:

class Hand:

def init (self, label=''):

self.cards = []

self.label = label

When you create a Hand, Python invokes this init method, not the one in Deck.

>>> hand = Hand('new hand')

>>> hand.cards

[]

>>> hand.label

ADUP/18CS55 Module4

Dept. of CSE, BRCE

'new hand'

The other methods are inherited from Deck, so we can use pop_card and add_card to deal a card:

>>> deck = Deck()

>>> card = deck.pop_card()

>>> hand.add_card(card)

>>> print(hand)

King of Spades

A natural next step is to encapsulate this code in a method called move_cards:

#inside class Deck:

class Deck:

def move_cards(self, hand, num):

for i in range(num):

hand.add_card(self.pop_card())

move_cards takes two arguments, a Hand object and the number of cards to deal. It modifies both

self and hand, and returns None.

In some games, cards are moved from one hand to another, or from a hand back to the deck. You can

use move_cards for any of these operations: self can be either a Deck or a Hand, and hand, despite

the name, can also be a Deck.

Inheritance is a useful feature. Some programs that would be repetitive without inheritance can be

written more elegantly with it.

Inheritance can facilitate code reuse, since you can customize the behavior of parent classes without

having to modify them.

In some cases, the inheritance structure reflects the natural structure of the problem, which makes

the design easier to understand.

On the other hand, inheritance can make programs difficult to read.

When a method is invoked, it is sometimes not clear where to find its definition. The relevant code

may be spread across several modules. Also, many of the things that can be done using inheritance

can be done as well or better without it.

Class diagrams

So far we have seen stack diagrams, which show the state of a program, and object diagrams, which

show the attributes of an object and their values.

These diagrams represent a snapshot in the execution of a program, so they change as the program

runs.

They are also highly detailed; for some purposes, too detailed.

A class diagram is a more abstract representation of the structure of a program.

Instead of showing individual objects, it shows classes and the relationships between them.

There are several kinds of relationship between classes:

• Objects in one class might contain references to objects in another class. For example,each

Rectangle contains a reference to a Point, and each Deck contains references tomany Cards.

This kind of relationship is called HAS-A, as in, ―a Rectangle has a Point.‖

• One class might inherit from another. This relationship is called IS-A, as in, ―a Hand is a kind of a

Deck.‖

• One class might depend on another in the sense that objects in one class take objects in the second

ADUP/18CS55 Module4

Dept. of CSE, BRCE

class as parameters, or use objects in the second class as part of a computation. This kind of

relationship is called a dependency.

A class diagram is a graphical representation of these relationships.

For example, Figure 18.2 shows the relationships between Card, Deck and Hand.

The arrow with a hollow triangle head represents an IS-A relationship; in this case it indicates that

Hand inherits from Deck.

The standard arrow head represents a HAS-A relationship; in this case a Deck has references to Card

objects.

The star (*) near the arrow head is a multiplicity; it indicates how many Cards a Deck has.

A multiplicity can be a simple number, like 52, a range, like 5..7 or a star, which indicates that a

Deck can have any number of Cards.

There are no dependencies in this diagram. They would normally be shown with a dashed arrow. Or

if there are a lot of dependencies, they are sometimes omitted.

A more detailed diagram might show that a Deck actually contains a list of Cards, but built-in types

like list and dict are usually not included in class diagrams.

Data encapsulation

The previous chapters demonstrate a development plan we might call ―object-oriented design‖.

We identified objects we needed—like Point, Rectangle and Time—and defined classes to represent

them.

In each case there is an obvious correspondence between the object and some entity in the real world

(or at least a mathematical world).

But sometimes it is less obvious what objects you need and how they should interact.

In that case you need a different development plan. In the same way that we discovered function

interfaces by encapsulation and generalization, we can discover class interfaces by data

encapsulation.

Markov analysis, from Section 13.8, provides a good example. If you download my code from

http://thinkpython2.com/code/markov.py, you‘ll see that it uses two global variables—suffix_map

and prefix—that are read and written from several functions.

suffix_map = {}

prefix = ()

Because these variables are global, we can only run one analysis at a time.

If we read two texts, their prefixes and suffixes would be added to the same data structures (which

makes for some interesting generated text).

To run multiple analyses, and keep them separate, we can encapsulate the state of each analysis in an

object. Here‘s what that looks like:

class Markov:

def init (self):

http://thinkpython2.com/code/markov.py

ADUP/18CS55 Module4

Dept. of CSE, BRCE

self.suffix_map = {}

self.prefix = ()

Next, we transform the functions into methods. For example, here‘s process_word:

def process_word(self, word, order=2):

if len(self.prefix) < order:

self.prefix += (word,)

return

try:

self.suffix_map[self.prefix].append(word)

except KeyError:

if there is no entry for this prefix, make one

self.suffix_map[self.prefix] = [word]

self.prefix = shift(self.prefix, word)

Transforming a program like this—changing the design without changing the behavior—is another

example of refactoring.

This example suggests a development plan for designing objects and methods:

1. Start by writing functions that read and write global variables (when necessary).

2. Once you get the program working, look for associations between global variables

and the functions that use them.

3. Encapsulate related variables as attributes of an object.

4. Transform the associated functions into methods of the new class.

As an exercise, download my Markov code from http://thinkpython2.com/code/markov.py, and

follow the steps described above to encapsulate the global variables as attributes of a new class

called Markov. Solution: http://thinkpython2.com/code/markov2.py.

GENERAL OOP CONCEPTS

At the earlier age of computers, the programming was done using assembly language. Even though,

the assembly language can be used to produce highly efficient programs, it is not easy to learn or to

use effectively. Moreover, debugging assembly code is quite difficult. At the later stage, the

programming languages like BASIC, COBOL and FORTRAN came into existence. But, these

languages are non-structured and consisting of a mass of tangled jumps and conditional branches

that make a program virtually impossible to understand.

http://thinkpython2.com/code/
http://thinkpython2.com/code/

ADUP/18CS55 Module4

Dept. of CSE, BRCE

To overcome these problems, the structured or procedural programming methodology was

developed. Here, the actual problem is divided into small independent tasks/modules. Then the

programs are written for each of these tasks and they are grouped together to get the final solution

for the given problem. Thus, the solution design technique for this method is known as top-down

approach. C is the one successful language that adopted structured programming style. However,

even with the structured programming methods, once a project/program reaches a certain size, its

complexity exceeds what a programmer can manage.

The new approach – object oriented programming was developed to overcome the problems with

structured approach. In this methodology, the actual data and the operations to be performed on that

are grouped as a single entity called object. The objects necessary to get the solution of a problem

are identified initially. The interactions between various objects are then identified to achieve the

solution of original problem. Thus, it is also known as bottom-up approach. Object oriented

concepts inhabits many advantages like re-usability of the code, security etc.

In structured programming approach, the programs are written around what is happening rather than

who is being affected. That is, structured programming focuses more on the process or operation and

not on the data to be processed. This is known as process oriented model and this can be thought of

as code acting on data. For example, a program written in C is defined by its functions, any of which

may operate on any type of data used by the program.

But, the real world problems are not organized into data and functions independent of each other and

are tightly closed. So, it is better to write a program around ‗who is being affected’. This kind of

data-centered programming methodology is known as object oriented programming (OOP) and this

can be thought of as data controlling access to code. Here, the behavior and/or characteristics of the

data/objects are used to determine the function to be written for applying them. Thus, the basic idea

behind OOP language is to combine both data and the function that operates on data into a single

unit. Such a unit is called as an object. A function that operates on data is known as a member

function and it is the only means of accessing an object‘s data.

Elements of OOP: The object oriented programming supports some of the basic concepts as

building blocks. Every OOPs language normally supports and developed around these features. They

are

 Class

 Object

 Encapsulation

 Data Abstraction

 Inheritance

 Polymorphism

Class: A class is a user defined data type which binds data and functions together into a single

entity.

Class is a building block of any object oriented language.

As it is discussed earlier, object oriented programming treats data and the code acting on that data as

a connected component.

That is, data and code are not treated separately as procedure oriented languages do.

ADUP/18CS55 Module4

Dept. of CSE, BRCE

Thus, OOPs suggests to wrap up the data and functions together into a single entity.

Normally, a class represents the prototype of a real world entity.

Hence, a class, by its own, is not having any physical existence.

It can be treated as a user-defined data type.

Since a class is a prototype or blueprint of a real world entity, it consists of number of properties

(known as data members) and behavior (known as member functions).

To illustrate this, consider an example of a class representing a human being shown in the following

Figure –

HumanBeing

- Hair Color
- Number of legs

- Number of eyes

- Skin Color

- Gender

+ Walking

+ Talking

+ Eating
Sleeping

Class diagram for Human Being

Few of the properties of human can be number of legs, number of eyes, gender, number of hands,

hair color, skin color etc.

And the functionality or behavior of a human may be walking, talking, eating, thinking etc.

Object : An object is an instance of a class.

A class is just a prototype, representing a new data type.

To use this new data type, we need to create a variable of this type. Such a variable is known as an

object.

Thus, an object is a physical entity, which consumes memory.
In OOPs, the object represents a real world data which defines the properties and behavior of any

real world entity.

Every object has its unique existence and it is different from the other objects of a same class.

Let us refer to the class of human being discussed in previous section.

Assume that there are two persons: Ramu and Radha.

Now, properties of Ramu and Radha may be having different values as shown in the following

Table.

Properties of Objects

Property/Attribute Objects

Ramu Radha

Skin color Wheatish Fair

Hair gray black

Number of legs 2 2

Number of eyes 2 2

Skinkcolor:Wheatish(string)
Hair:gray(string)
Numberoflegs:2(int)

HumanBeing:Ramu

ADUP/18CS55 Module4

Dept. of CSE, BRCE

Also, the walking and talking style of both of them may be different. Hence there are two different

objects of the same class.

Thus, two or more objects of the same class will differ in the values of their properties and way they

behave. But, they share common set of types of properties and behavior.

Encapsulation: The process of binding data and code together into a single entity is called

encapsulation.

It is the mechanism that binds code and the data it manipulates together and keeps both safe from

misuse and unauthorized manipulation. In any OOP language, the basis of encapsulation is the class.

Class defines the structure and behavior (i.e. data and code) that will be shared by a set of objects.

Each object of a given class contains the structure and behavior defined by the class. So, object is

also referred to as an instance of a class and it is thought just as a variable of user-defined data type.

Thus, class is a logical construct and an object is a physical entity.

The data defined by the class are known as member variables and the functions written to operate on

that data are known as member functions or methods. The member variables and functions can be

private or public.

If a particular member is private, then only the other members of that class can access that member.

That is, a private member of the class can‘t be accessed from outside the class.

But, if any member is public, then it can be accessed from anywhere in the program.

Thus, through encapsulation, an OOP technique provides high security for user‘s data and for the

entire system.

Data Abstraction: Hiding the implementation details from the end user.

Many a times, abstraction and encapsulation are used interchangeably.

But, actually, they are not same.

In OOPs, the end user of the program need not know how the actual function works, or what is being

done inside a function to make it work.

The user must know only the abstract meaning of the task, and he can freely call a function to do that

task.

The internal details of function may not be known to the user.

Designing the program in such a way is called as abstraction.

To understand the concept of abstraction, consider a scenario:

When you are using Microsoft Word, if you click on Save icon, a dialogue box appears which allows

you to save the document in a physical location of your choice.

Similarly, when you click Open icon, another dialogue box appears to select a file to be opened from

the hard disk.

You, as a user will not be knowing how the internal code would have written so as to open a

dialogue box when an icon is being clicked.

As a user, those details are not necessary for you.
Thus, such implementation details are hidden from the end user.

This is an abstraction.

Being an OOPs programmer, one should design a class (with data members and member functions)

such a way that, the internal code details are hidden from the end user.

OOPs provide a facility of having member functions to achieve this technique and the external world

(normally, a main() function) needs to call the member function using an object to achieve a

particular task.

ADUP/18CS55 Module4

Dept. of CSE, BRCE

Inheritance: Making use of existing code.

It is a process by which one object can acquire the properties of another object.

It supports the concept of hierarchical (top-down) classification.

For example, consider a large set of animals having their own behaviors.
In that, mammals are of one kind having all the properties of animals with some additional behaviors

that are unique to them.

Again, we can divide mammals class into various mammals like dogs, cats, human etc. Again among

the dogs, differentiation is there like

Doberman, German-shepherd, Labrador etc.
Thus, if we consider a German-shepherd, it is having all the qualities of a dog along with its own

special features.

Moreover, it exhibits all the properties of a mammal, and in turn of an animal. Hence it is inheriting

the properties of animals, then of mammals and then of dogs along with its own specialties.

We can depict it as shown in the Figure given below.

Example of Inheritance

Normally, inheritance of this type is also known as ―is-a‖ relationship.

Because, we can easily say ―Doberman is a dog‖, ―Dog is a mammal‖ etc.

Hence, inheritance is termed as Generalization to Specialization if we consider from top-to-bottom

level.

On the other hands, it can be treated as Specialization to Generalization if it is bottom-to-top level.

This indicates, in inheritance, the topmost base class will be more generalized with only properties

which are common to all of its derived classes (various levels) and the bottom-most class is most

specialized version of the class which is ready to use in a real-world.

If we apply this concept for programming, it can be easily understood that a code written is reusable.

Thus, in this mechanism, it is possible for one object to be a specific instance of a more general case.

Using inheritance, an object need only define those qualities that make it unique object within its

class. It can inherit its general attributes from its parent.

Polymorphism: This can be thought of as one interface, multiple methods.

It is a feature that allows one interface to be used for a general class of actions.

The specific action is determined by the exact nature of the situation.

Using this mechanism, function overloading and operator overloading can be done.
Consider an example of performing stack operation on three different types of data viz. integer,

floating-point and characters.

Animal

Reptile Mammal

Human Cat Dog

Doberman

German-

Shepherd

ADUP/18CS55 Module4

Dept. of CSE, BRCE

In a non-object oriented programming, we have to write functions with different name for push and

pop operations for all these types of data even though the logic is same for all the data types.

But in OOP languages, we can use the same function names with the data types of the parameters

being different.

This is an example for function overloading.

We know that the ‗+‘ operator is used for adding two numbers.

Conceptually, the concatenation of two strings is also an addition.

But, in non-object oriented programming language, we cannot use ‗+‘ operator to concatenate two

strings.

This is possible in object oriented programming language by overloading the ‗+‘ operator for string

operands.

Polymorphism is also meant for economy of expression.

That is, the way you express things is more economical when you use polymorphism.

For example, if you have a function to add two matrices, you can use just a + symbol as:

m3 = m1 + m2;
here, m1, m2 and m3 are objects of matrix class and + is an overloaded operator. In the same

program, if you have a function to concatenate two strings, you can write an overloaded function for

+ operator to do so –

s3= s1+ s2; where s1, s2 and s3 are strings.

Moreover, for adding two numbers, the same + operator is used with its default behavior. Thus, one

single operator + is being used for multiple purposes without disturbing its abstract meaning –

addition. But, type of data it is adding is different. Hence, the way you have expressed your

statements is more economical rather than having multiple functions like –

addMat(m1, m2);

concat(s1, s2); etc.

ADUP/18CS55 Module5

Dept. of CSE, BRCE

MODULE-V

WEB SCRAPING

In those rare, terrifying moments when I’m without Wi-Fi, I realize just how much of what I

do on the computer is really what I do on the internet. Out of sheer habit I’ll find myself

trying to check email, read friends’ Twitter feeds, or answer the question, “Did Kurtwood

Smith have any major roles before he was in the original 1987 RoboCop?”1

Since so much work on a computer involves going on the internet, it’d be great if your

programs could get online. Web scraping is the term for using a program to download and

process content from the web. For example, Google runs many web scraping programs to

index web pages for its search engine. In this chapter, you will learn about several modules

that make it easy to scrape web pages in Python.

webbrowser Comes with Python and opens a browser to a specific page.

requests Downloads files and web pages from the internet.

bs4 Parses HTML, the format that web pages are written in.

selenium Launches and controls a web browser. The selenium module is able to fill in

forms and simulate mouse clicks in this browser.

PROJECT: MAPIT.PY WITH THE WEBBROWSER MODULE

The webbrowser module’s open() function can launch a new browser to a specified URL.

Enter the following into the interactive shell:

>>> import webbrowser

>>> webbrowser.open('https://inventwithpython.com/')

A webbrowser tab will open to the URL https://inventwithpython.com/. This is about the

only thing the webbrowser module can do. Even so, the open() function does make some

interesting things possible. For example, it’s tedious to copy a street address to the clipboard

and bring up a map of it on Google Maps. You could take a few steps out of this task by

writing a simple script to automatically launch the map in your browser using the contents of

your clipboard. This way, you only have to copy the address to a clipboard and run the script,

and the map will be loaded for you.

This is what your program does:

1. Gets a street address from the command line arguments or clipboard

2. Opens the web browser to the Google Maps page for the address

This means your code will need to do the following:

https://automatetheboringstuff.com/2e/chapter12/#calibre_link-34
https://inventwithpython.com/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

1. Read the command line arguments from sys.argv.

2. Read the clipboard contents.

3. Call the webbrowser.open() function to open the web browser.

Open a new file editor tab and save it as mapIt.py.

Step 1: Figure Out the URL

Based on the instructions in Appendix B, set up mapIt.py so that when you run it from the

command line, like so . . .

C:\> mapit 870 Valencia St, San Francisco, CA 94110

. . . the script will use the command line arguments instead of the clipboard. If there are no

command line arguments, then the program will know to use the contents of the clipboard.

First you need to figure out what URL to use for a given street address. When you

load https://maps.google.com/ in the browser and search for an address, the URL in the

address bar looks something like

this: https://www.google.com/maps/place/870+Valencia+St/@37.7590311,-

122.4215096,17z/data=!3m1!4b1!4m2!3m1!1s0x808f7e3dadc07a37:0xc86b0b2bb93b73d8.

The address is in the URL, but there’s a lot of additional text there as well. Websites often

add extra data to URLs to help track visitors or customize sites. But if you try just going

to https://www.google.com/maps/place/870+Valencia+St+San+Francisco+CA/, you’ll find

that it still brings up the correct page. So your program can be set to open a web browser

to 'https://www.google.com/maps/place/your_address_string' (where your_address_string is

the address you want to map).

Step 2: Handle the Command Line Arguments

Make your code look like this:

#! python3

mapIt.py - Launches a map in the browser using an address from the

command line or clipboard.

import webbrowser, sys

if len(sys.argv) > 1:

Get address from command line.

address = ' '.join(sys.argv[1:])

TODO: Get address from clipboard.

After the program’s #! shebang line, you need to import the webbrowser module for

launching the browser and import the sys module for reading the potential command line

arguments. The sys.argv variable stores a list of the program’s filename and command line

https://automatetheboringstuff.com/2e/chapter12/#calibre_link-35
https://maps.google.com/
https://www.google.com/maps/place/870%2BValencia%2BSt/%4037.7590311%2C-
https://www.google.com/maps/place/870%2BValencia%2BSt%2BSan%2BFrancisco%2BCA/
http://www.google.com/maps/place/your_address_string%27
http://www.google.com/maps/place/your_address_string%27

ADUP/18CS55 Module5

Dept. of CSE, BRCE

arguments. If this list has more than just the filename in it, then len(sys.argv) evaluates to an

integer greater than 1, meaning that command line arguments have indeed been provided.

Command line arguments are usually separated by spaces, but in this case, you want to

interpret all of the arguments as a single string. Since sys.argv is a list of strings, you can pass

it to the join() method, which returns a single string value. You don’t want the program name

in this string, so instead of sys.argv, you should pass sys.argv[1:] to chop off the first element

of the array. The final string that this expression evaluates to is stored in the address variable.

If you run the program by entering this into the command line . . .

mapit 870 Valencia St, San Francisco, CA 94110

. . . the sys.argv variable will contain this list value:

['mapIt.py', '870', 'Valencia', 'St, ', 'San', 'Francisco, ', 'CA', '94110']

The address variable will contain the string '870 Valencia St, San Francisco, CA 94110'.

Step 3: Handle the Clipboard Content and Launch the Browser

Make your code look like the following:

#! python3

mapIt.py - Launches a map in the browser using an address from the

command line or clipboard.

import webbrowser, sys, pyperclip

if len(sys.argv) > 1:

Get address from command line.

address = ' '.join(sys.argv[1:])

else:

Get address from clipboard.

address = pyperclip.paste()

webbrowser.open('https://www.google.com/maps/place/' + address)

If there are no command line arguments, the program will assume the address is stored on

the clipboard. You can get the clipboard content with pyperclip.paste() and store it in a

variable named address. Finally, to launch a web browser with the Google Maps URL,

call webbrowser.open().

While some of the programs you write will perform huge tasks that save you hours, it can

be just as satisfying to use a program that conveniently saves you a few seconds each time

you perform a common task, such as getting a map of an address. Table 12-1 compares the

steps needed to display a map with and without mapIt.py.

Table 12-1: Getting a Map with and Without mapIt.py

http://www.google.com/maps/place/%27
http://www.google.com/maps/place/%27
https://automatetheboringstuff.com/2e/chapter12/#calibre_link-36

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Manually getting a map Using mapIt.py

Highlight the address.

Copy the address.

Open the web browser.

Go to https://maps.google.com/.

Click the address text field.

Paste the address.

Press enter.

Highlight the address.

Copy the address.

Run mapIt.py.

See how mapIt.py makes this task less tedious?

Ideas for Similar Programs

As long as you have a URL, the webbrowser module lets users cut out the step of opening the

browser and directing themselves to a website. Other programs could use this functionality to

do the following:

 Open all links on a page in separate browser tabs.

 Open the browser to the URL for your local weather.

 Open several social network sites that you regularly check.

DOWNLOADING FILES FROM THE WEB WITH THE REQUESTS MODULE

about complicated issues such as network errors, connection problems, and data compression.

The requests module doesn’t come with Python, so you’ll have to install it first. From the

command line, run pip install --user requests. (Appendix A has additional details on how to

install third-party modules.)

The requests module was written because Python’s urllib2 module is too complicated to

use. In fact, take a permanent marker and black out this entire paragraph. Forget I ever

mentioned urllib2. If you need to download things from the web, just use

the requests module.

Next, do a simple test to make sure the requests module installed itself correctly. Enter the

following into the interactive shell:

>>> import requests

If no error messages show up, then the requests module has been successfully installed.

Downloading a Web Page with the requests.get() Function

The requests.get() function takes a string of a URL to download. By

calling type() on requests.get()’s return value, you can see that it returns a Response object,

which contains the response that the web server gave for your request. I’ll explain

The requests module lets you easily download files from the web without having to worry

https://maps.google.com/
https://automatetheboringstuff.com/2e/chapter12/#calibre_link-2

ADUP/18CS55 Module5

Dept. of CSE, BRCE

the Response object in more detail later, but for now, enter the following into the interactive

shell while your computer is connected to the internet:

>>> import requests

➊ >>> res = requests.get('https://automatetheboringstuff.com/files/rj.txt')

>>> type(res)

<class 'requests.models.Response'>

➋ >>> res.status_code == requests.codes.ok

True

>>> len(res.text)

178981

>>> print(res.text[:250])

The Project Gutenberg EBook of Romeo and Juliet, by William Shakespeare

This eBook is for the use of anyone anywhere at no cost and with

almost no restrictions whatsoever. You may copy it, give it away or

re-use it under the terms of the Proje

The URL goes to a text web page for the entire play of Romeo and Juliet, provided on this

book’s site ➊. You can tell that the request for this web page succeeded by checking

the status_code attribute of the Response object. If it is equal to the value

of requests.codes.ok, then everything went fine ➋. (Incidentally, the status code for “OK” in

the HTTP protocol is 200. You may already be familiar with the 404 status code for “Not

Found.”) You can find a complete list of HTTP status codes and their meanings

at https://en.wikipedia.org/wiki/List_of_HTTP_status_codes.

If the request succeeded, the downloaded web page is stored as a string in

the Response object’s text variable. This variable holds a large string of the entire play; the

call to len(res.text) shows you that it is more than 178,000 characters long. Finally,

calling print(res.text[:250]) displays only the first 250 characters.

If the request failed and displayed an error message, like “Failed to establish a new

connection” or “Max retries exceeded,” then check your internet connection. Connecting to

servers can be quite complicated, and I can’t give a full list of possible problems here. You

can find common causes of your error by doing a web search of the error message in quotes.

Checking for Errors

As you’ve seen, the Response object has a status_code attribute that can be checked

against requests.codes.ok (a variable that has the integer value 200) to see whether the

download succeeded. A simpler way to check for success is to call

the raise_for_status() method on the Response object. This will raise an exception if there

was an error downloading the file and will do nothing if the download succeeded. Enter the

following into the interactive shell:

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

ADUP/18CS55 Module5

Dept. of CSE, BRCE

>>> res = requests.get('https://inventwithpython.com/page_that_does_not_exist')

>>> res.raise_for_status()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "C:\Users\Al\AppData\Local\Programs\Python\Python37\lib\site-

packages\requests\models

.py", line 940, in raise_for_status

raise HTTPError(http_error_msg, response=self)

requests.exceptions.HTTPError: 404 Client Error: Not Found for url:

https://inventwithpython

.com/page_that_does_not_exist.html

The raise_for_status() method is a good way to ensure that a program halts if a bad

download occurs. This is a good thing: You want your program to stop as soon as some

unexpected error happens. If a failed download isn’t a deal breaker for your program, you can

wrap the raise_for_status() line with try and except statements to handle this error case

without crashing.

import requests

res = requests.get('https://inventwithpython.com/page_that_does_not_exist')

try:

res.raise_for_status()

except Exception as exc:

print('There was a problem: %s' % (exc))

This raise_for_status() method call causes the program to output the following:

There was a problem: 404 Client Error: Not Found for url: https://

inventwithpython.com/page_that_does_not_exist.html

Always call raise_for_status() after calling requests.get(). You want to be sure that the

download has actually worked before your program continues.

SAVING DOWNLOADED FILES TO THE HARD DRIVE

From here, you can save the web page to a file on your hard drive with the

standard open() function and write() method. There are some slight differences, though. First,

you must open the file in write binary mode by passing the string 'wb' as the second argument

to open(). Even if the page is in plaintext (such as the Romeo and Juliet text you downloaded

earlier), you need to write binary data instead of text data in order to maintain the Unicode

encoding of the text.

ADUP/18CS55 Module5

Dept. of CSE, BRCE

To write the web page to a file, you can use a for loop with

the Response object’s iter_content() method.

>>> import requests

>>> res = requests.get('https://automatetheboringstuff.com/files/rj.txt')

>>> res.raise_for_status()

>>> playFile = open('RomeoAndJuliet.txt', 'wb')

>>> for chunk in res.iter_content(100000):

playFile.write(chunk)

100000

78981

>>> playFile.close()

The iter_content() method returns “chunks” of the content on each iteration through the

loop. Each chunk is of the bytes data type, and you get to specify how many bytes each chunk

will contain. One hundred thousand bytes is generally a good size, so pass 100000 as the

argument to iter_content().

The file RomeoAndJuliet.txt will now exist in the current working directory. Note that

while the filename on the website was rj.txt, the file on your hard drive has a different

filename. The requests module simply handles downloading the contents of web pages. Once

the page is downloaded, it is simply data in your program. Even if you were to lose your

internet connection after downloading the web page, all the page data would still be on your

computer.

The write() method returns the number of bytes written to the file. In the previous

example, there were 100,000 bytes in the first chunk, and the remaining part of the file

needed only 78,981 bytes.

To review, here’s the complete process for downloading and saving a file:

1. Call requests.get() to download the file.

2. Call open() with 'wb' to create a new file in write binary mode.

3. Loop over the Response object’s iter_content() method.

4. Call write() on each iteration to write the content to the file.

5. Call close() to close the file.

 Joel on Software: The Absolute Minimum Every Software Developer Absolutely, Positively

Must Know About Unicode and Character Sets (No

Excuses!): https://www.joelonsoftware.com/articles/Unicode.html

 Pragmatic Unicode: https://nedbatchelder.com/text/unipain.html

UNICODE ENCODINGS

Unicode encodings are beyond the scope of this book, but you can learn more about them

from these web pages:

https://www.joelonsoftware.com/articles/Unicode.html
https://nedbatchelder.com/text/unipain.html

ADUP/18CS55 Module5

Dept. of CSE, BRCE

That’s all there is to the requests module! The for loop and iter_content() stuff may seem

complicated compared to the open()/write()/close() workflow you’ve been using to write text

files, but it’s to ensure that the requests module doesn’t eat up too much memory even if you

download massive files. You can learn about the requests module’s other features

from https://requests.readthedocs.org/.

HTML

Before you pick apart web pages, you’ll learn some HTML basics. You’ll also see how to

access your web browser’s powerful developer tools, which will make scraping information

from the web much easier.

Resources for Learning HTML

Hypertext Markup Language (HTML) is the format that web pages are written in. This

chapter assumes you have some basic experience with HTML, but if you need a beginner

tutorial, I suggest one of the following sites:

 https://developer.mozilla.org/en-US/learn/html/

 https://htmldog.com/guides/html/beginner/

 https://www.codecademy.com/learn/learn-html

A Quick Refresher

In case it’s been a while since you’ve looked at any HTML, here’s a quick overview of the

basics. An HTML file is a plaintext file with the .html file extension. The text in these files is

surrounded by tags, which are words enclosed in angle brackets. The tags tell the browser

how to format the web page. A starting tag and closing tag can enclose some text to form

an element. The text (or inner HTML) is the content between the starting and closing tags. For

example, the following HTML will display Hello, world! in the browser, with Hello in bold:

Hello, world!

This HTML will look like Figure 12-1 in a browser.

Figure 12-1: Hello, world! rendered in the browser

https://requests.readthedocs.org/
https://developer.mozilla.org/en-US/learn/html/
https://htmldog.com/guides/html/beginner/
https://www.codecademy.com/learn/learn-html
https://automatetheboringstuff.com/2e/chapter12/#calibre_link-37

ADUP/18CS55 Module5

Dept. of CSE, BRCE

The opening tag says that the enclosed text will appear in bold. The

closing tags tells the browser where the end of the bold text is.

There are many different tags in HTML. Some of these tags have extra properties in the

form of attributes within the angle brackets. For example, the <a> tag encloses text that

should be a link. The URL that the text links to is determined by the href attribute. Here’s an

example:

Al's free Python books.

This HTML will look like Figure 12-2 in a browser.

Figure 12-2: The link rendered in the browser

Some elements have an id attribute that is used to uniquely identify the element in the

page. You will often instruct your programs to seek out an element by its id attribute, so

figuring out an element’s id attribute using the browser’s developer tools is a common task in

writing web scraping programs.

Viewing the Source HTML of a Web Page

You’ll need to look at the HTML source of the web pages that your programs will work with.

To do this, right-click (or CTRL-click on macOS) any web page in your web browser, and

select View Source or View page source to see the HTML text of the page (see Figure 12-3).

This is the text your browser actually receives. The browser knows how to display, or render,

the web page from this HTML.

https://automatetheboringstuff.com/2e/chapter12/#calibre_link-38
https://automatetheboringstuff.com/2e/chapter12/#calibre_link-39

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Figure 12-3: Viewing the source of a web page

I highly recommend viewing the source HTML of some of your favorite sites. It’s fine if

you don’t fully understand what you are seeing when you look at the source. You won’t need

HTML mastery to write simple web scraping programs—after all, you won’t be writing your

own websites. You just need enough knowledge to pick out data from an existing site.

Opening Your Browser’s Developer Tools

In addition to viewing a web page’s source, you can look through a page’s HTML using your

browser’s developer tools. In Chrome and Internet Explorer for Windows, the developer tools

are already installed, and you can press F12 to make them appear (see Figure 12-4). Pressing

https://automatetheboringstuff.com/2e/chapter12/#calibre_link-40

ADUP/18CS55 Module5

Dept. of CSE, BRCE

F12 again will make the developer tools disappear. In Chrome, you can also bring up the

developer tools by selecting View ▸ Developer ▸ Developer Tools. In macOS, pressing -

OPTION-I will open Chrome’s Developer Tools.

Figure 12-4: The Developer Tools window in the Chrome browser

In Firefox, you can bring up the Web Developer Tools Inspector by pressing CTRL-

SHIFT-C on Windows and Linux or by pressing -OPTION-C on macOS. The layout is

almost identical to Chrome’s developer tools.

In Safari, open the Preferences window, and on the Advanced pane check the Show

Develop menu in the menu bar option. After it has been enabled, you can bring up the

developer tools by pressing -OPTION-I.

After enabling or installing the developer tools in your browser, you can right-click any

part of the web page and select Inspect Element from the context menu to bring up the

HTML responsible for that part of the page. This will be helpful when you begin to parse

HTML for your web scraping programs.

DON’T USE REGULAR EXPRESSIONS TO PARSE HTML

Locating a specific piece of HTML in a string seems like a perfect case for regular

expressions. However, I advise you against it. There are many different ways that HTML can

be formatted and still be considered valid HTML, but trying to capture all these possible

variations in a regular expression can be tedious and error prone. A module developed

specifically for parsing HTML, such as bs4, will be less likely to result in bugs.

You can find an extended argument for why you shouldn’t parse HTML with regular

expressions at https://stackoverflow.com/a/1732454/1893164/.

https://stackoverflow.com/a/1732454/1893164/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Using the Developer Tools to Find HTML Elements

Once your program has downloaded a web page using the requests module, you will have the

page’s HTML content as a single string value. Now you need to figure out which part of the

HTML corresponds to the information on the web page you’re interested in.

This is where the browser’s developer tools can help. Say you want to write a program to

pull weather forecast data from https://weather.gov/. Before writing any code, do a little

research. If you visit the site and search for the 94105 ZIP code, the site will take you to a

page showing the forecast for that area.

What if you’re interested in scraping the weather information for that ZIP code? Right-

click where it is on the page (or CONTROL-click on macOS) and select Inspect

Element from the context menu that appears. This will bring up the Developer Tools

window, which shows you the HTML that produces this particular part of the web

page. Figure 12-5 shows the developer tools open to the HTML of the nearest forecast. Note

that if the https://weather.gov/ site changes the design of its web pages, you’ll need to repeat

this process to inspect the new elements.

Figure 12-5: Inspecting the element that holds forecast text with the developer tools

https://weather.gov/
https://automatetheboringstuff.com/2e/chapter12/#calibre_link-41
https://weather.gov/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

From the developer tools, you can see that the HTML responsible for the forecast part of

the web page is <div class="col-sm-10 forecast-text">Sunny, with a high near 64. West wind

11 to 16 mph, with gusts as high as 21 mph.</div>. This is exactly what you were looking

for! It seems that the forecast information is contained inside a <div> element with

the forecast-text CSS class. Right-click on this element in the browser’s developer console,

and from the context menu that appears, select Copy ▸ CSS Selector. This will copy a string

such as 'div.row-odd:nth-child(1) > div:nth-child(2)' to the clipboard. You can use this string

for Beautiful Soup’s select() or Selenium’s find_element_by_css_selector() methods, as

explained later in this chapter. Now that you know what you’re looking for, the Beautiful

Soup module will help you find it in the string.

PARSING HTML WITH THE BS4 MODULE

Beautiful Soup is a module for extracting information from an HTML page (and is much

better for this purpose than regular expressions). The Beautiful Soup module’s name

is bs4 (for Beautiful Soup, version 4). To install it, you will need to run pip install --user

beautifulsoup4 from the command line. (Check out Appendix A for instructions on installing

third-party modules.) While beautifulsoup4 is the name used for installation, to import

Beautiful Soup you run import bs4.

For this chapter, the Beautiful Soup examples will parse (that is, analyze and identify the

parts of) an HTML file on the hard drive. Open a new file editor tab in Mu, enter the

following, and save it as example.html. Alternatively, download it

from https://nostarch.com/automatestuff2/.

<!-- This is the example.html example file. -->

<html><head><title>The Website Title</title></head>

<body>

<p>Download my Python book from <a href="https://

inventwithpython.com">my website.</p>

<p class="slogan">Learn Python the easy way!</p>

<p>By Al Sweigart</p>

</body></html>

As you can see, even a simple HTML file involves many different tags and attributes, and

matters quickly get confusing with complex websites. Thankfully, Beautiful Soup makes

working with HTML much easier.

Creating a BeautifulSoup Object from HTML

The bs4.BeautifulSoup() function needs to be called with a string containing the HTML it

will parse. The bs4.BeautifulSoup() function returns a BeautifulSoup object. Enter the

following into the interactive shell while your computer is connected to the internet:

https://automatetheboringstuff.com/2e/chapter12/#calibre_link-2
https://nostarch.com/automatestuff2/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

>>> import requests, bs4

>>> res = requests.get('https://nostarch.com')

>>> res.raise_for_status()

>>> noStarchSoup = bs4.BeautifulSoup(res.text, 'html.parser')

>>> type(noStarchSoup)

<class 'bs4.BeautifulSoup'>

This code uses requests.get() to download the main page from the No Starch Press website

and then passes the text attribute of the response to bs4.BeautifulSoup().

The BeautifulSoup object that it returns is stored in a variable named noStarchSoup.

You can also load an HTML file from your hard drive by passing a File object

to bs4.BeautifulSoup() along with a second argument that tells Beautiful Soup which parser

to use to analyze the HTML.

Enter the following into the interactive shell (after making sure the example.html file is in

the working directory):

>>> exampleFile = open('example.html')

>>> exampleSoup = bs4.BeautifulSoup(exampleFile, 'html.parser')

>>> type(exampleSoup)

<class 'bs4.BeautifulSoup'>

The 'html.parser' parser used here comes with Python. However, you can use the

faster 'lxml' parser if you install the third-party lxml module. Follow the instructions

in Appendix A to install this module by running pip install --user lxml. Forgetting to include

this second argument will result in a UserWarning: No parser was explicitly

specified warning.

Once you have a BeautifulSoup object, you can use its methods to locate specific parts of

an HTML document.

Finding an Element with the select() Method

You can retrieve a web page element from a BeautifulSoup object by calling

the select()method and passing a string of a CSS selector for the element you are looking for.

Selectors are like regular expressions: they specify a pattern to look for—in this case, in

HTML pages instead of general text strings.

A full discussion of CSS selector syntax is beyond the scope of this book (there’s a good

selector tutorial in the resources at https://nostarch.com/automatestuff2/), but here’s a short

introduction to selectors. Table 12-2 shows examples of the most common CSS selector

patterns.

Table 12-2: Examples of CSS Selectors

Selector passed to

the select() method

Will match . . .

https://automatetheboringstuff.com/2e/chapter12/#calibre_link-2
https://nostarch.com/automatestuff2/
https://automatetheboringstuff.com/2e/chapter12/#calibre_link-42

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Selector passed to

the select() method

Will match . . .

soup.select('div') All elements named <div>

soup.select('#author') The element with an id attribute of author

soup.select('.notice') All elements that use a CSS class attribute named notice

soup.select('div span') All elements named that are within an element

named <div>

soup.select('div > span') All elements named that are directly within an

element named <div>, with no other element in between

soup.select('input[name]') All elements named <input> that have a name attribute

with any value

soup.select('input[type="button"]') All elements named <input> that have an attribute

named type with value button

The various selector patterns can be combined to make sophisticated matches. For

example, soup.select('p #author') will match any element that has an id attribute of author, as

long as it is also inside a <p> element. Instead of writing the selector yourself, you can also

right-click on the element in your browser and select Inspect Element. When the browser’s

developer console opens, right-click on the element’s HTML and select Copy ▸ CSS

Selector to copy the selector string to the clipboard and paste it into your source code.

The select() method will return a list of Tag objects, which is how Beautiful Soup

represents an HTML element. The list will contain one Tag object for every match in

the BeautifulSoup object’s HTML. Tag values can be passed to the str() function to show the

HTML tags they represent. Tag values also have an attrs attribute that shows all the HTML

attributes of the tag as a dictionary. Using the example.html file from earlier, enter the

following into the interactive shell:

>>> import bs4

>>> exampleFile = open('example.html')

>>> exampleSoup = bs4.BeautifulSoup(exampleFile.read(), 'html.parser')

>>> elems = exampleSoup.select('#author')

>>> type(elems) # elems is a list of Tag objects.

<class 'list'>

>>> len(elems)

1

>>> type(elems[0])

<class 'bs4.element.Tag'>

>>> str(elems[0]) # The Tag object as a string.

'Al Sweigart'

>>> elems[0].getText()

'Al Sweigart'

ADUP/18CS55 Module5

Dept. of CSE, BRCE

>>> elems[0].attrs

{'id': 'author'}

This code will pull the element with id="author" out of our example HTML. We

use select('#author') to return a list of all the elements with id="author". We store this list

of Tag objects in the variable elems, and len(elems) tells us there is one Tag object in the list;

there was one match. Calling getText() on the element returns the element’s text, or inner

HTML. The text of an element is the content between the opening and closing tags: in this

case, 'Al Sweigart'.

Passing the element to str() returns a string with the starting and closing tags and the

element’s text. Finally, attrs gives us a dictionary with the element’s attribute, 'id', and the

value of the id attribute, 'author'.

You can also pull all the <p> elements from the BeautifulSoup object. Enter this into the

interactive shell:

>>> pElems = exampleSoup.select('p')

>>> str(pElems[0])

'<p>Download my Python book from <a href="https://

inventwithpython.com">my website.</p>'

>>> pElems[0].getText()

'Download my Python book from my website.'

>>> str(pElems[1])

'<p class="slogan">Learn Python the easy way!</p>'

>>> pElems[1].getText()

'Learn Python the easy way!'

>>> str(pElems[2])

'<p>By Al Sweigart</p>'

>>> pElems[2].getText()

'By Al Sweigart'

This time, select() gives us a list of three matches, which we store in pElems.

Using str() on pElems[0], pElems[1], and pElems[2] shows you each element as a string, and

using getText() on each element shows you its text.

Getting Data from an Element’s Attributes

The get() method for Tag objects makes it simple to access attribute values from an element.

The method is passed a string of an attribute name and returns that attribute’s value.

Using example.html, enter the following into the interactive shell:

>>> import bs4

>>> soup = bs4.BeautifulSoup(open('example.html'), 'html.parser')

>>> spanElem = soup.select('span')[0]

ADUP/18CS55 Module5

Dept. of CSE, BRCE

>>> str(spanElem)

'Al Sweigart'

>>> spanElem.get('id')

'author'

>>> spanElem.get('some_nonexistent_addr') == None

True

>>> spanElem.attrs

{'id': 'author'}

Here we use select() to find any elements and then store the first matched element

in spanElem. Passing the attribute name 'id' to get() returns the attribute’s value, 'author'.

PROJECT: OPENING ALL SEARCH RESULTS

Whenever I search a topic on Google, I don’t look at just one search result at a time. By

middle-clicking a search result link (or clicking while holding CTRL), I open the first several

links in a bunch of new tabs to read later. I search Google often enough that this workflow—

opening my browser, searching for a topic, and middle-clicking several links one by one—is

tedious. It would be nice if I could simply type a search term on the command line and have

my computer automatically open a browser with all the top search results in new tabs. Let’s

write a script to do this with the search results page for the Python Package Index

at https://pypi.org/. A program like this can be adapted to many other websites, although the

Google and DuckDuckGo often employ measures that make scraping their search results

pages difficult.

This is what your program does:

1. Gets search keywords from the command line arguments

2. Retrieves the search results page

3. Opens a browser tab for each result

This means your code will need to do the following:

1. Read the command line arguments from sys.argv.

2. Fetch the search result page with the requests module.

3. Find the links to each search result.

4. Call the webbrowser.open() function to open the web browser.

Open a new file editor tab and save it as searchpypi.py.

Step 1: Get the Command Line Arguments and Request the Search Page

Before coding anything, you first need to know the URL of the search result page. By looking

at the browser’s address bar after doing a search, you can see that the result page has a URL

like https://pypi.org/search/?q=<SEARCH_TERM_HERE>. The requests module can

download this page and then you can use Beautiful Soup to find the search result links in the

HTML. Finally, you’ll use the webbrowser module to open those links in browser tabs.

Make your code look like the following:

https://pypi.org/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

#! python3

searchpypi.py - Opens several search results.

import requests, sys, webbrowser, bs4

print('Searching...') # display text while downloading the search result page

res = requests.get('https://google.com/search?q=' 'https://pypi.org/search/?q='

+ ' '.join(sys.argv[1:]))

res.raise_for_status()

TODO: Retrieve top search result links.

TODO: Open a browser tab for each result.

The user will specify the search terms using command line arguments when they launch

the program. These arguments will be stored as strings in a list in sys.argv.

Step 2: Find All the Results

Now you need to use Beautiful Soup to extract the top search result links from your

downloaded HTML. But how do you figure out the right selector for the job? For example,

you can’t just search for all <a> tags, because there are lots of links you don’t care about in

the HTML. Instead, you must inspect the search result page with the browser’s developer

tools to try to find a selector that will pick out only the links you want.

After doing a search for Beautiful Soup, you can open the browser’s developer tools and

inspect some of the link elements on the page. They can look complicated, something like

pages of this: <a class="package-snippet" href="HYPERLINK "view-

source:https://pypi.org/project/xml-parser/"/project/xml-parser/">.

It doesn’t matter that the element looks incredibly complicated. You just need to find the

pattern that all the search result links have.

Make your code look like the following:

#! python3

searchpypi.py - Opens several google results.

import requests, sys, webbrowser, bs4

--snip--

Retrieve top search result links.

soup = bs4.BeautifulSoup(res.text, 'html.parser')

Open a browser tab for each result.

linkElems = soup.select('.package-snippet')

If you look at the <a> elements, though, the search result links all have class="package-

snippet". Looking through the rest of the HTML source, it looks like the package-

snippet class is used only for search result links. You don’t have to know what the CSS

ADUP/18CS55 Module5

Dept. of CSE, BRCE

class package-snippet is or what it does. You’re just going to use it as a marker for

the <a> element you are looking for. You can create a BeautifulSoup object from the

downloaded page’s HTML text and then use the selector '.package-snippet' to find

all <a> elements that are within an element that has the package-snippet CSS class. Note that

if the PyPI website changes its layout, you may need to update this program with a new CSS

selector string to pass to soup.select(). The rest of the program will still be up to date.

Step 3: Open Web Browsers for Each Result

Finally, we’ll tell the program to open web browser tabs for our results. Add the following to

the end of your program:

#! python3

searchpypi.py - Opens several search results.

import requests, sys, webbrowser, bs4

--snip--

Open a browser tab for each result.

linkElems = soup.select('.package-snippet')

numOpen = min(5, len(linkElems))

for i in range(numOpen):

urlToOpen = 'https://pypi.org' + linkElems[i].get('href')

print('Opening', urlToOpen)

webbrowser.open(urlToOpen)

By default, you open the first five search results in new tabs using

the webbrowser module. However, the user may have searched for something that turned up

fewer than five results. The soup.select() call returns a list of all the elements that matched

your '.package-snippet' selector, so the number of tabs you want to open is either 5 or the

length of this list (whichever is smaller).

The built-in Python function min() returns the smallest of the integer or float arguments it

is passed. (There is also a built-in max() function that returns the largest argument it is

passed.) You can use min() to find out whether there are fewer than five links in the list and

store the number of links to open in a variable named numOpen. Then you can run through

a for loop by calling range(numOpen).

On each iteration of the loop, you use webbrowser.open() to open a new tab in the web

browser. Note that the href attribute’s value in the returned <a> elements do not have the

initial https://pypi.org part, so you have to concatenate that to the href attribute’s string value.

Now you can instantly open the first five PyPI search results for, say, boring stuff by

running searchpypi boring stuff on the command line! (See Appendix B for how to easily run

programs on your operating system.)

Ideas for Similar Programs

https://automatetheboringstuff.com/2e/chapter12/#calibre_link-35

ADUP/18CS55 Module5

Dept. of CSE, BRCE

The benefit of tabbed browsing is that you can easily open links in new tabs to peruse later. A

program that automatically opens several links at once can be a nice shortcut to do the

following:

 Open all the product pages after searching a shopping site such as Amazon.

 Open all the links to reviews for a single product.

 Open the result links to photos after performing a search on a photo site such as Flickr or

Imgur.

PROJECT: DOWNLOADING ALL XKCD COMICS

Blogs and other regularly updating websites usually have a front page with the most recent

post as well as a Previous button on the page that takes you to the previous post. Then that

post will also have a Previous button, and so on, creating a trail from the most recent page to

the first post on the site. If you wanted a copy of the site’s content to read when you’re not

online, you could manually navigate over every page and save each one. But this is pretty

boring work, so let’s write a program to do it instead.

XKCD is a popular geek webcomic with a website that fits this structure (see Figure 12-

6). The front page at https://xkcd.com/ has a Prev button that guides the user back through

prior comics. Downloading each comic by hand would take forever, but you can write a

script to do this in a couple of minutes.

Figure 12-6: XKCD, “a webcomic of romance, sarcasm, math, and language”

Here’s what your program does:

1. Loads the XKCD home page

2. Saves the comic image on that page

https://automatetheboringstuff.com/2e/chapter12/#calibre_link-43
https://automatetheboringstuff.com/2e/chapter12/#calibre_link-43
https://xkcd.com/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

3. Follows the Previous Comic link

4. Repeats until it reaches the first comic

This means your code will need to do the following:

1. Download pages with the requests module.

2. Find the URL of the comic image for a page using Beautiful Soup.

3. Download and save the comic image to the hard drive with iter_content().

4. Find the URL of the Previous Comic link, and repeat.

Open a new file editor tab and save it as downloadXkcd.py.

Step 1: Design the Program

If you open the browser’s developer tools and inspect the elements on the page, you’ll find

the following:

 The URL of the comic’s image file is given by the href attribute of an element.

 The element is inside a <div id="comic"> element.

 The Prev button has a rel HTML attribute with the value prev.

 The first comic’s Prev button links to the https://xkcd.com/# URL, indicating that there are

no more previous pages.

Make your code look like the following:

#! python3

downloadXkcd.py - Downloads every single XKCD comic.

import requests, os, bs4

url = 'https://xkcd.com' # starting url

os.makedirs('xkcd', exist_ok=True) # store comics in ./xkcd

while not url.endswith('#'):

TODO: Download the page.

TODO: Find the URL of the comic image.

TODO: Download the image.

TODO: Save the image to ./xkcd.

TODO: Get the Prev button's url.

print('Done.')

You’ll have a url variable that starts with the value 'https://xkcd.com' and repeatedly

update it (in a for loop) with the URL of the current page’s Prev link. At every step in the

loop, you’ll download the comic at url. You’ll know to end the loop when url ends with '#'.

https://xkcd.com/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

You will download the image files to a folder in the current working directory

named xkcd. The call os.makedirs() ensures that this folder exists, and

the exist_ok=True keyword argument prevents the function from throwing an exception if

this folder already exists. The remaining code is just comments that outline the rest of your

program.

Step 2: Download the Web Page

Let’s implement the code for downloading the page. Make your code look like the following:

#! python3

downloadXkcd.py - Downloads every single XKCD comic.

import requests, os, bs4

url = 'https://xkcd.com' # starting url

os.makedirs('xkcd', exist_ok=True) # store comics in ./xkcd

while not url.endswith('#'):

Download the page.

print('Downloading page %s...' % url)

res = requests.get(url)

res.raise_for_status()

soup = bs4.BeautifulSoup(res.text, 'html.parser')

TODO: Find the URL of the comic image.

TODO: Download the image.

TODO: Save the image to ./xkcd.

TODO: Get the Prev button's url.

print('Done.')

First, print url so that the user knows which URL the program is about to download; then

use the requests module’s request.get() function to download it. As always, you immediately

call the Response object’s raise_for_status() method to throw an exception and end the

program if something went wrong with the download. Otherwise, you create

a BeautifulSoup object from the text of the downloaded page.

Step 3: Find and Download the Comic Image

Make your code look like the following:

ADUP/18CS55 Module5

Dept. of CSE, BRCE

#! python3

downloadXkcd.py - Downloads every single XKCD comic.

import requests, os, bs4

--snip--

Find the URL of the comic image.

comicElem = soup.select('#comic img')

if comicElem == []:

print('Could not find comic image.')

else:

comicUrl = 'https:' + comicElem[0].get('src')

Download the image.

print('Downloading image %s...' % (comicUrl))

res = requests.get(comicUrl)

res.raise_for_status()

TODO: Save the image to ./xkcd.

TODO: Get the Prev button's url.

print('Done.')

From inspecting the XKCD home page with your developer tools, you know that

the element for the comic image is inside a <div> element with the id attribute set

to comic, so the selector '#comic img' will get you the correct element from

the BeautifulSoup object.

A few XKCD pages have special content that isn’t a simple image file. That’s fine; you’ll

just skip those. If your selector doesn’t find any elements, then soup.select('#comic img') will

return a blank list. When that happens, the program can just print an error message and move

on without downloading the image.

Otherwise, the selector will return a list containing one element. You can get

the src attribute from this element and pass it to requests.get() to download the

comic’s image file.

Step 4: Save the Image and Find the Previous Comic

Make your code look like the following:

#! python3

downloadXkcd.py - Downloads every single XKCD comic.

ADUP/18CS55 Module5

Dept. of CSE, BRCE

import requests, os, bs4

--snip--

Save the image to ./xkcd.

imageFile = open(os.path.join('xkcd', os.path.basename(comicUrl)),

'wb')

for chunk in res.iter_content(100000):

imageFile.write(chunk)

imageFile.close()

Get the Prev button's url.

prevLink = soup.select('a[rel="prev"]')[0]

url = 'https://xkcd.com' + prevLink.get('href')

print('Done.')

At this point, the image file of the comic is stored in the res variable. You need to write

this image data to a file on the hard drive.

You’ll need a filename for the local image file to pass to open(). The comicUrl will have a

value like 'https://imgs.xkcd.com/comics/heartbleed_explanation.png'—which you might

have noticed looks a lot like a file path. And in fact, you can

call os.path.basename() with comicUrl, and it will return just the last part of the

URL, 'heartbleed_explanation.png'. You can use this as the filename when saving the image

to your hard drive. You join this name with the name of your xkcd folder

using os.path.join() so that your program uses backslashes (\) on Windows and forward

slashes (/) on macOS and Linux. Now that you finally have the filename, you can

call open() to open a new file in 'wb' “write binary” mode.

Remember from earlier in this chapter that to save files you’ve downloaded

using requests, you need to loop over the return value of the iter_content() method. The code

in the for loop writes out chunks of the image data (at most 100,000 bytes each) to the file

and then you close the file. The image is now saved to your hard drive.

Afterward, the selector 'a[rel="prev"]' identifies the <a> element with the rel attribute set

to prev, and you can use this <a> element’s href attribute to get the previous comic’s URL,

which gets stored in url. Then the while loop begins the entire download process again for

this comic.

The output of this program will look like this:

Downloading page https://xkcd.com...

Downloading image https://imgs.xkcd.com/comics/phone_alarm.png...

Downloading page https://xkcd.com/1358/...

Downloading image https://imgs.xkcd.com/comics/nro.png...

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Downloading page https://xkcd.com/1357/...

Downloading image https://imgs.xkcd.com/comics/free_speech.png...

Downloading page https://xkcd.com/1356/...

Downloading image https://imgs.xkcd.com/comics/orbital_mechanics.png...

Downloading page https://xkcd.com/1355/...

Downloading image https://imgs.xkcd.com/comics/airplane_message.png...

Downloading page https://xkcd.com/1354/...

Downloading image https://imgs.xkcd.com/comics/heartbleed_explanation.png...

--snip--

This project is a good example of a program that can automatically follow links in order to

scrape large amounts of data from the web. You can learn about Beautiful Soup’s other

features from its documentation

at https://www.crummy.com/software/BeautifulSoup/bs4/doc/.

Ideas for Similar Programs

Downloading pages and following links are the basis of many web crawling programs.

Similar programs could also do the following:

 Back up an entire site by following all of its links.

 Copy all the messages off a web forum.

 Duplicate the catalog of items for sale on an online store.

The requests and bs4 modules are great as long as you can figure out the URL you need to

pass to requests.get(). However, sometimes this isn’t so easy to find. Or perhaps the website

you want your program to navigate requires you to log in first. The selenium module will

give your programs the power to perform such sophisticated tasks.

CONTROLLING THE BROWSER WITH THE SELENIUM MODULE

The selenium module lets Python directly control the browser by programmatically clicking

links and filling in login information, almost as though there were a human user interacting

with the page. Using selenium, you can interact with web pages in a much more advanced

way than with requests and bs4; but because it launches a web browser, it is a bit slower and

hard to run in the background if, say, you just need to download some files from the web.

Still, if you need to interact with a web page in a way that, say, depends on the JavaScript

code that updates the page, you’ll need to use selenium instead of requests. That’s because

major ecommerce websites such as Amazon almost certainly have software systems to

recognize traffic that they suspect is a script harvesting their info or signing up for multiple

free accounts. These sites may refuse to serve pages to you after a while, breaking any scripts

you’ve made. The selenium module is much more likely to function on these sites long-term

than requests.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

A major “tell” to websites that you’re using a script is the user-agent string, which

identifies the web browser and is included in all HTTP requests. For example, the user-agent

string for the requests module is something like 'python-requests/2.21.0'. You can visit a site

such as https://www.whatsmyua.info/ to see your user-agent string. Using selenium, you’re

much more likely to “pass for human” because not only is Selenium’s user-agent is the same

as a regular browser (for instance, 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:65.0)

Gecko/20100101 Firefox/65.0'), but it has the same traffic patterns: a selenium-controlled

browser will download images, advertisements, cookies, and privacy-invading trackers just

like a regular browser. However, selenium can still be detected by websites, and major

ticketing and ecommerce websites often block browsers controlled by selenium to prevent

web scraping of their pages.

Starting a selenium-Controlled Browser

The following examples will show you how to control Firefox’s web browser. If you don’t

already have Firefox, you can download it for free from https://getfirefox.com/. You can

install selenium by running pip install --user selenium from a command line terminal. More

information is available in Appendix A.

Importing the modules for selenium is slightly tricky. Instead of import selenium, you

need to run from selenium import webdriver. (The exact reason why the selenium module is

set up this way is beyond the scope of this book.) After that, you can launch the Firefox

browser with selenium. Enter the following into the interactive shell:

>>> from selenium import webdriver

>>> browser = webdriver.Firefox()

>>> type(browser)

<class 'selenium.webdriver.firefox.webdriver.WebDriver'>

>>> browser.get('https://inventwithpython.com')

You’ll notice when webdriver.Firefox() is called, the Firefox web browser starts up.

Calling type() on the value webdriver.Firefox() reveals it’s of the WebDriver data type. And

calling browser.get('https://inventwithpython.com') directs the browser

to https://inventwithpython.com/. Your browser should look something like Figure 12-7.

https://www.whatsmyua.info/
https://getfirefox.com/
https://automatetheboringstuff.com/2e/chapter12/#calibre_link-2
https://inventwithpython.com/
https://automatetheboringstuff.com/2e/chapter12/#calibre_link-44

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Figure 12-7: After we call webdriver.Firefox() and get() in Mu, the Firefox browser appears.

If you encounter the error message “'geckodriver' executable needs to be in PATH.”, then

you need to manually download the webdriver for Firefox before you can use selenium to

control it. You can also control browsers other than Firefox if you install the webdriver for

them.

For Firefox, go to https://github.com/mozilla/geckodriver/releases and download the

geckodriver for your operating system. (“Gecko” is the name of the browser engine used in

Firefox.) For example, on Windows you’ll want to download the geckodriver-v0.24.0-

win64.zip link, and on macOS, you’ll want the geckodriver-v0.24.0-macos.tar.gz link. Newer

versions will have slightly different links. The downloaded ZIP file will contain

a geckodriver.exe (on Windows) or geckodriver (on macOS and Linux) file that you can put

on your system PATH. Appendix B has information about the system PATH, or you can

learn more at https://stackoverflow.com/q/40208051/1893164.

For Chrome, go to https://sites.google.com/a/chromium.org/chromedriver/downloads and

download the ZIP file for your operating system. This ZIP file will contain

a chromedriver.exe (on Windows) or chromedriver (on macOS or Linux) file that you can put

on your system PATH.

Other major web browsers also have webdrivers available, and you can often find these by

performing an internet search for “<browser name> webdriver”.

If you still have problems opening up a new browser under the control of selenium, it may

be because the current version of the browser is incompatible with the selenium module. One

https://github.com/mozilla/geckodriver/releases
https://automatetheboringstuff.com/2e/chapter12/#calibre_link-35
https://stackoverflow.com/q/40208051/1893164
https://sites.google.com/a/chromium.org/chromedriver/downloads

ADUP/18CS55 Module5

Dept. of CSE, BRCE

workaround is to install an older version of the web browser—or, more simply, an older

version of the selenium module. You can find the list of selenium version numbers

at https://pypi.org/project/selenium/#history. Unfortunately, the compatibility between

versions of selenium and a browser sometimes breaks, and you may need to search the web

for possible solutions. Appendix A has more information about running pip to install a

specific version of selenium. (For example, you might run pip install --user -U

selenium==3.14.1.)

Finding Elements on the Page

WebDriver objects have quite a few methods for finding elements on a page. They are

divided into the find_element_* and find_elements_* methods. The find_element_* methods

return a single WebElement object, representing the first element on the page that matches

your query. The find_elements_* methods return a list of WebElement_* objects

for every matching element on the page.

Table 12-3 shows several examples of find_element_* and find_elements_* methods

being called on a WebDriver object that’s stored in the variable browser.

Table 12-3: Selenium’s WebDriver Methods for Finding Elements

Method name WebElement object/list returned

browser.find_element_by_class_name(name)

browser.find_elements_by_class_name(name)

Elements that use the CSS

class name

browser.find_element_by_css_selector(selector)

browser.find_elements_by_css_selector(selector)

Elements that match the CSS

selector

browser.find_element_by_id(id)

browser.find_elements_by_id(id)

Elements with a matching id

attribute value

browser.find_element_by_link_text(text)

browser.find_elements_by_link_text(text)

<a> elements that completely

match the text provided

browser.find_element_by_partial_link_text(text)

browser.find_elements_by_partial_link_text(text)

<a> elements that contain the

text provided

browser.find_element_by_name(name)

browser.find_elements_by_name(name)

Elements with a matching name

attribute value

browser.find_element_by_tag_name(name)

browser.find_elements_by_tag_name(name)

Elements with a matching tag name

(case-insensitive; an <a> element is

matched by 'a' and 'A')

Except for the *_by_tag_name() methods, the arguments to all the methods are case

sensitive. If no elements exist on the page that match what the method is looking for,

the selenium module raises a NoSuchElement exception. If you do not want this exception to

crash your program, add try and except statements to your code.

https://pypi.org/project/selenium/#history
https://automatetheboringstuff.com/2e/chapter12/#calibre_link-2
https://automatetheboringstuff.com/2e/chapter12/#calibre_link-45

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Once you have the WebElement object, you can find out more about it by reading the

attributes or calling the methods in Table 12-4.

Table 12-4: WebElement Attributes and Methods

For example, open a new file editor tab and enter the following program:

from selenium import webdriver

browser = webdriver.Firefox()

browser.get('https://inventwithpython.com')

try:

elem = browser.find_element_by_class_name(' cover-thumb')

print('Found <%s> element with that class name!' % (elem.tag_name))

except:

print('Was not able to find an element with that name.')

Here we open Firefox and direct it to a URL. On this page, we try to find elements with

the class name 'bookcover', and if such an element is found, we print its tag name using

the tag_name attribute. If no such element was found, we print a different message.

This program will output the following:

Found element with that class name!

We found an element with the class name 'bookcover' and the tag name 'img'.

Clicking the Page

WebElement objects returned from the find_element_* and find_elements_* methods have

a click() method that simulates a mouse click on that element. This method can be used to

Attribute or

method

Description

tag_name The tag name, such as 'a' for an <a> element

get_attribute(name) The value for the element’s name attribute

text The text within the element, such as 'hello' in hello

clear() For text field or text area elements, clears the text typed into it

is_displayed() Returns True if the element is visible; otherwise returns False

is_enabled() For input elements, returns True if the element is enabled; otherwise

returns False

is_selected() For checkbox or radio button elements, returns True if the element is

selected; otherwise returns False

location A dictionary with keys 'x' and 'y' for the position of the element in the

page

https://automatetheboringstuff.com/2e/chapter12/#calibre_link-46

ADUP/18CS55 Module5

Dept. of CSE, BRCE

follow a link, make a selection on a radio button, click a Submit button, or trigger whatever

else might happen when the element is clicked by the mouse. For example, enter the

following into the interactive shell:

>>> from selenium import webdriver

>>> browser = webdriver.Firefox()

>>> browser.get('https://inventwithpython.com')

>>> linkElem = browser.find_element_by_link_text('Read Online for Free')

>>> type(linkElem)

<class 'selenium.webdriver.remote.webelement.FirefoxWebElement'>

>>> linkElem.click() # follows the "Read Online for Free" link

This opens Firefox to https://inventwithpython.com/, gets the WebElement object for

the <a> element with the text Read It Online, and then simulates clicking that <a> element.

It’s just like if you clicked the link yourself; the browser then follows that link.

Filling Out and Submitting Forms

Sending keystrokes to text fields on a web page is a matter of finding

the <input> or <textarea> element for that text field and then calling the send_keys()method.

For example, enter the following into the interactive shell:

>>> from selenium import webdriver

>>> browser = webdriver.Firefox()

>>> browser.get('https://login.metafilter.com')

>>> userElem = browser.find_element_by_id('user_name)

>>> userElem.send_keys('your_real_username_here')

>>> passwordElem = browser.find_element_by_id('user_pass')

>>> passwordElem.send_keys('your_real_password_here')

>>> passwordElem.submit()

As long as login page for MetaFilter hasn’t changed the id of the Username and Password

text fields since this book was published, the previous code will fill in those text fields with

the provided text. (You can always use the browser’s inspector to verify the id.) Calling

the submit() method on any element will have the same result as clicking the Submit button

for the form that element is in. (You could have just as easily called emailElem.submit(), and

the code would have done the same thing.)

WARNING

Avoid putting your passwords in source code whenever possible. It’s easy to accidentally

leak your passwords to others when they are left unencrypted on your hard drive. If

possible, have your program prompt users to enter their passwords from the keyboard

using the pyinputplus.inputPassword() function described in Chapter 8.

https://inventwithpython.com/
https://automatetheboringstuff.com/2e/chapter12/#calibre_link-47

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Sending Special Keys

The selenium module has a module for keyboard keys that are impossible to type into a string

value, which function much like escape characters. These values are stored in attributes in

the selenium.webdriver.common.keys module. Since that is such a long module name, it’s

much easier to run from selenium.webdriver.common.keys import Keys at the top of your

program; if you do, then you can simply write Keys anywhere you’d normally have to

write selenium.webdriver.common.keys. Table 12-5 lists the commonly used Keys variables.

Table 12-5: Commonly Used Variables in the selenium.webdriver.common.keys Module

Attributes Meanings

Keys.DOWN, Keys.UP, Keys.LEFT, Keys.RIGHT The keyboard arrow keys

Keys.ENTER, Keys.RETURN The ENTER and RETURN key

s

Keys.HOME, Keys.END, Keys.PAGE_DOWN, Keys.PAGE

_UP

The HOME, END, PAGEDOW

N, and PAGEUP keys

Keys.ESCAPE, Keys.BACK_SPACE, Keys.DELETE The ESC, BACKSPACE,

and DELETE keys

Keys.F1, Keys.F2, . . . , Keys.F12 The F1 to F12 keys at the top of

the keyboard

Keys.TAB The TAB key

For example, if the cursor is not currently in a text field, pressing

the HOME and END keys will scroll the browser to the top and bottom of the page,

respectively. Enter the following into the interactive shell, and notice how

the send_keys() calls scroll the page:

>>> from selenium import webdriver

>>> from selenium.webdriver.common.keys import Keys

>>> browser = webdriver.Firefox()

>>> browser.get('https://nostarch.com')

>>> htmlElem = browser.find_element_by_tag_name('html')

>>> htmlElem.send_keys(Keys.END) # scrolls to bottom

>>> htmlElem.send_keys(Keys.HOME) # scrolls to top

The <html> tag is the base tag in HTML files: the full content of the HTML file is

enclosed within the <html> and </html> tags.

Calling browser.find_element_by_tag_name('html') is a good place to send keys to the

general web page. This would be useful if, for example, new content is loaded once you’ve

scrolled to the bottom of the page.

Clicking Browser Buttons

https://automatetheboringstuff.com/2e/chapter12/#calibre_link-48

ADUP/18CS55 Module5

Dept. of CSE, BRCE

The selenium module can simulate clicks on various browser buttons as well through the

following methods:

browser.back() Clicks the Back button.

browser.forward() Clicks the Forward button.

browser.refresh() Clicks the Refresh/Reload button.

browser.quit() Clicks the Close Window button.

More Information on Selenium

Selenium can do much more beyond the functions described here. It can modify your

browser’s cookies, take screenshots of web pages, and run custom JavaScript. To learn more

about these features, you can visit the selenium documentation at https://selenium-

python.readthedocs.org/.

SUMMARY

Most boring tasks aren’t limited to the files on your computer. Being able to

programmatically download web pages will extend your programs to the internet.

The requests module makes downloading straightforward, and with some basic knowledge of

HTML concepts and selectors, you can utilize the BeautifulSoup module to parse the pages

you download.

But to fully automate any web-based tasks, you need direct control of your web browser

through the selenium module. The selenium module will allow you to log in to websites and

fill out forms automatically. Since a web browser is the most common way to send and

receive information over the internet, this is a great ability to have in your programmer

toolkit.

PRACTICE QUESTIONS

1. Briefly describe the differences between the webbrowser, requests, bs4,

and selenium modules.

2. What type of object is returned by requests.get()? How can you access the downloaded

content as a string value?

3. What requests method checks that the download worked?

4. How can you get the HTTP status code of a requests response?

5. How do you save a requests response to a file?

6. What is the keyboard shortcut for opening a browser’s developer tools?

7. How can you view (in the developer tools) the HTML of a specific element on a web

page?

8. What is the CSS selector string that would find the element with an id attribute of main?

https://selenium-python.readthedocs.org/
https://selenium-python.readthedocs.org/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

9. What is the CSS selector string that would find the elements with a CSS class

of highlight?

10. What is the CSS selector string that would find all the <div> elements inside

another <div> element?

11. What is the CSS selector string that would find the <button> element with

a value attribute set to favorite?

12. Say you have a Beautiful Soup Tag object stored in the variable spam for the

element <div>Hello, world!</div>. How could you get a string 'Hello, world!' from

the Tag object?

13. How would you store all the attributes of a Beautiful Soup Tag object in a variable

named linkElem?

14. Running import selenium doesn’t work. How do you properly import

the selenium module?

15. What’s the difference between the find_element_* and find_elements_* methods?

16. What methods do Selenium’s WebElement objects have for simulating mouse clicks and

keyboard keys?

17. You could call send_keys(Keys.ENTER) on the Submit button’s WebElement object,

but what is an easier way to submit a form with selenium?

18. How can you simulate clicking a browser’s Forward, Back, and Refresh buttons

with selenium?

PRACTICE PROJECTS

For practice, write programs to do the following tasks.

Command Line Emailer

Write a program that takes an email address and string of text on the command line and then,

using selenium, logs in to your email account and sends an email of the string to the provided

address. (You might want to set up a separate email account for this program.)

This would be a nice way to add a notification feature to your programs. You could also

write a similar program to send messages from a Facebook or Twitter account.

Image Site Downloader

Write a program that goes to a photo-sharing site like Flickr or Imgur, searches for a category

of photos, and then downloads all the resulting images. You could write a program that works

with any photo site that has a search feature.

2048

2048 is a simple game where you combine tiles by sliding them up, down, left, or right with

the arrow keys. You can actually get a fairly high score by repeatedly sliding in an up, right,

down, and left pattern over and over again. Write a program that will open the game

ADUP/18CS55 Module5

Dept. of CSE, BRCE

at https://gabrielecirulli.github.io/2048/ and keep sending up, right, down, and left keystrokes

to automatically play the game.

Link Verification

Write a program that, given the URL of a web page, will attempt to download every linked

page on the page. The program should flag any pages that have a 404 “Not Found” status

code and print them out as broken links.

WORKING WITH EXCEL SPREADSHEETS

Although we don’t often think of spreadsheets as programming tools, almost everyone uses

them to organize information into two-dimensional data structures, perform calculations with

formulas, and produce output as charts. In the next two chapters, we’ll integrate Python into

two popular spreadsheet applications: Microsoft Excel and Google Sheets.

Excel is a popular and powerful spreadsheet application for Windows.

The openpyxl module allows your Python programs to read and modify Excel spreadsheet

files. For example, you might have the boring task of copying certain data from one

spreadsheet and pasting it into another one. Or you might have to go through thousands of

rows and pick out just a handful of them to make small edits based on some criteria. Or you

might have to look through hundreds of spreadsheets of department budgets, searching for

any that are in the red. These are exactly the sort of boring, mindless spreadsheet tasks that

Python can do for you.

Although Excel is proprietary software from Microsoft, there are free alternatives that run

on Windows, macOS, and Linux. Both LibreOffice Calc and OpenOffice Calc work with

Excel’s .xlsx file format for spreadsheets, which means the openpyxl module can work on

spreadsheets from these applications as well. You can download the software

from https://www.libreoffice.org/ and https://www.openoffice.org/, respectively. Even if you

already have Excel installed on your computer, you may find these programs easier to use.

The screenshots in this chapter, however, are all from Excel 2010 on Windows 10.

EXCEL DOCUMENTS

First, let’s go over some basic definitions: an Excel spreadsheet document is called

a workbook. A single workbook is saved in a file with the .xlsx extension. Each workbook

can contain multiple sheets (also called worksheets). The sheet the user is currently viewing

(or last viewed before closing Excel) is called the active sheet.

Each sheet has columns (addressed by letters starting at A) and rows (addressed by

numbers starting at 1). A box at a particular column and row is called a cell. Each cell can

contain a number or text value. The grid of cells with data makes up a sheet.

https://gabrielecirulli.github.io/2048/
https://www.libreoffice.org/
https://www.openoffice.org/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

INSTALLING THE OPENPYXL MODULE

Python does not come with OpenPyXL, so you’ll have to install it. Follow the instructions for

installing third-party modules in Appendix A; the name of the module is openpyxl.

This book uses version 2.6.2 of OpenPyXL. It’s important that you install this version by

running pip install --user -U openpyxl==2.6.2 because newer versions of OpenPyXL are

incompatible with the information in this book. To test whether it is installed correctly, enter

the following into the interactive shell:

>>> import openpyxl

If the module was correctly installed, this should produce no error messages. Remember

to import the openpyxl module before running the interactive shell examples in this chapter,

or you’ll get a NameError: name 'openpyxl' is not defined error.

You can find the full documentation for OpenPyXL at https://openpyxl.readthedocs.org/.

READING EXCEL DOCUMENTS

The examples in this chapter will use a spreadsheet named example.xlsx stored in the root

folder. You can either create the spreadsheet yourself or download it

from https://nostarch.com/automatestuff2/. Figure 13-1 shows the tabs for the three default

sheets named Sheet1, Sheet2, and Sheet3 that Excel automatically provides for new

workbooks. (The number of default sheets created may vary between operating systems and

spreadsheet programs.)

Figure 13-1: The tabs for a workbook’s sheets are in the lower-left corner of Excel.

Sheet 1 in the example file should look like Table 13-1. (If you didn’t

download example.xlsx from the website, you should enter this data into the sheet yourself.)

Table 13-1: The example.xlsx Spreadsheet

 A B C

1 4/5/2015 1:34:02 PM Apples 73

2 4/5/2015 3:41:23 AM Cherries 85

3 4/6/2015 12:46:51 PM Pears 14

4 4/8/2015 8:59:43 AM Oranges 52

https://automatetheboringstuff.com/2e/chapter13/#calibre_link-2
https://openpyxl.readthedocs.org/
https://nostarch.com/automatestuff2/
https://automatetheboringstuff.com/2e/chapter13/#calibre_link-1575
https://automatetheboringstuff.com/2e/chapter13/#calibre_link-1576

ADUP/18CS55 Module5

Dept. of CSE, BRCE

5

4/10/2015 2:07:00 AM

Apples

152

6 4/10/2015 6:10:37 PM Bananas 23

7 4/10/2015 2:40:46 AM Strawberries 98

Now that we have our example spreadsheet, let’s see how we can manipulate it with

the openpyxl module.

Opening Excel Documents with OpenPyXL

Once you’ve imported the openpyxl module, you’ll be able to use

the openpyxl.load_workbook() function. Enter the following into the interactive shell:

>>> import openpyxl

>>> wb = openpyxl.load_workbook('example.xlsx')

>>> type(wb)

<class 'openpyxl.workbook.workbook.Workbook'>

The openpyxl.load_workbook() function takes in the filename and returns a value of

the workbook data type. This Workbook object represents the Excel file, a bit like how

a File object represents an opened text file.

Remember that example.xlsx needs to be in the current working directory in order for you

to work with it. You can find out what the current working directory is by importing os and

using os.getcwd(), and you can change the current working directory using os.chdir().

Getting Sheets from the Workbook

You can get a list of all the sheet names in the workbook by accessing

the sheetnames attribute. Enter the following into the interactive shell:

>>> import openpyxl

>>> wb = openpyxl.load_workbook('example.xlsx')

>>> wb.sheetnames # The workbook's sheets' names.

['Sheet1', 'Sheet2', 'Sheet3']

>>> sheet = wb['Sheet3'] # Get a sheet from the workbook.

>>> sheet

<Worksheet "Sheet3">

>>> type(sheet)

<class 'openpyxl.worksheet.worksheet.Worksheet'>

>>> sheet.title # Get the sheet's title as a string.

'Sheet3'

>>> anotherSheet = wb.active # Get the active sheet.

>>> anotherSheet

<Worksheet "Sheet1">

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Each sheet is represented by a Worksheet object, which you can obtain by using the

square brackets with the sheet name string like a dictionary key. Finally, you can use

the active attribute of a Workbook object to get the workbook’s active sheet. The active sheet

is the sheet that’s on top when the workbook is opened in Excel. Once you have

the Worksheet object, you can get its name from the title attribute.

Getting Cells from the Sheets

Once you have a Worksheet object, you can access a Cell object by its name. Enter the

following into the interactive shell:

>>> import openpyxl

>>> wb = openpyxl.load_workbook('example.xlsx')

>>> sheet = wb['Sheet1'] # Get a sheet from the workbook.

>>> sheet['A1'] # Get a cell from the sheet.

<Cell 'Sheet1'.A1>

>>> sheet['A1'].value # Get the value from the cell.

datetime.datetime(2015, 4, 5, 13, 34, 2)

>>> c = sheet['B1'] # Get another cell from the sheet.

>>> c.value

'Apples'

>>> # Get the row, column, and value from the cell.

>>> 'Row %s, Column %s is %s' % (c.row, c.column, c.value)

'Row 1, Column B is Apples'

>>> 'Cell %s is %s' % (c.coordinate, c.value)

'Cell B1 is Apples'

>>> sheet['C1'].value

73

The Cell object has a value attribute that contains, unsurprisingly, the value stored in that

cell. Cell objects also have row, column, and coordinate attributes that provide location

information for the cell.

Here, accessing the value attribute of our Cell object for cell B1 gives us the

string 'Apples'. The row attribute gives us the integer 1, the column attribute gives us 'B', and

the coordinate attribute gives us 'B1'.

OpenPyXL will automatically interpret the dates in column A and return them

as datetime values rather than strings. The datetime data type is explained further in Chapter

17.

Specifying a column by letter can be tricky to program, especially because after column Z,

the columns start by using two letters: AA, AB, AC, and so on. As an alternative, you can

also get a cell using the sheet’s cell() method and passing integers for

its row and column keyword arguments. The first row or column integer is 1, not 0. Continue

the interactive shell example by entering the following:

https://automatetheboringstuff.com/2e/chapter13/#calibre_link-530
https://automatetheboringstuff.com/2e/chapter13/#calibre_link-530

ADUP/18CS55 Module5

Dept. of CSE, BRCE

>>> sheet.cell(row=1, column=2)

<Cell 'Sheet1'.B1>

>>> sheet.cell(row=1, column=2).value

'Apples'

>>> for i in range(1, 8, 2): # Go through every other row:

... print(i, sheet.cell(row=i, column=2).value)

...

1 Apples

3 Pears

5 Apples

7 Strawberries

As you can see, using the sheet’s cell() method and passing it row=1 and column=2 gets

you a Cell object for cell B1, just like specifying sheet['B1'] did. Then, using

the cell() method and its keyword arguments, you can write a for loop to print the values of a

series of cells.

Say you want to go down column B and print the value in every cell with an odd row

number. By passing 2 for the range() function’s “step” parameter, you can get cells from

every second row (in this case, all the odd-numbered rows). The for loop’s i variable is

passed for the row keyword argument to the cell() method, while 2 is always passed for

the column keyword argument. Note that the integer 2, not the string 'B', is passed.

You can determine the size of the sheet with

the Worksheet object’s max_row and max_column attributes. Enter the following into the

interactive shell:

>>> import openpyxl

>>> wb = openpyxl.load_workbook('example.xlsx')

>>> sheet = wb['Sheet1']

>>> sheet.max_row # Get the highest row number.

7

>>> sheet.max_column # Get the highest column number.

3

Note that the max_column attribute is an integer rather than the letter that appears in

Excel.

Converting Between Column Letters and Numbers

To convert from letters to numbers, call

the openpyxl.utils.column_index_from_string() function. To convert from numbers to letters,

call the openpyxl.utils.get_column_letter() function. Enter the following into the interactive

shell:

ADUP/18CS55 Module5

Dept. of CSE, BRCE

>>> import openpyxl

>>> from openpyxl.utils import get_column_letter, column_index_from_string

>>> get_column_letter(1) # Translate column 1 to a letter.

'A'

>>> get_column_letter(2)

'B'

>>> get_column_letter(27)

'AA'

>>> get_column_letter(900)

'AHP'

>>> wb = openpyxl.load_workbook('example.xlsx')

>>> sheet = wb['Sheet1']

>>> get_column_letter(sheet.max_column)

'C'

>>> column_index_from_string('A') # Get A's number.

1

>>> column_index_from_string('AA')

27

After you import these two functions from the openpyxl.utils module, you can

call get_column_letter() and pass it an integer like 27 to figure out what the letter name of the

27th column is. The function column_index_string() does the reverse: you pass it the letter

name of a column, and it tells you what number that column is. You don’t need to have a

workbook loaded to use these functions. If you want, you can load a workbook, get

a Worksheet object, and use a Worksheet attribute like max_column to get an integer. Then,

you can pass that integer to get_column_letter().

Getting Rows and Columns from the Sheets

You can slice Worksheet objects to get all the Cell objects in a row, column, or rectangular

area of the spreadsheet. Then you can loop over all the cells in the slice. Enter the following

into the interactive shell:

>>> import openpyxl

>>> wb = openpyxl.load_workbook('example.xlsx')

>>> sheet = wb['Sheet1']

>>> tuple(sheet['A1':'C3']) # Get all cells from A1 to C3.

((<Cell 'Sheet1'.A1>, <Cell 'Sheet1'.B1>, <Cell 'Sheet1'.C1>), (<Cell

'Sheet1'.A2>, <Cell 'Sheet1'.B2>, <Cell 'Sheet1'.C2>), (<Cell 'Sheet1'.A3>,

<Cell 'Sheet1'.B3>, <Cell 'Sheet1'.C3>))

➊ >>> for rowOfCellObjects in sheet['A1':'C3']:

➋ ... for cellObj in rowOfCellObjects:

... print(cellObj.coordinate, cellObj.value)

ADUP/18CS55 Module5

Dept. of CSE, BRCE

... print('--- END OF ROW ---')

A1 2015-04-05 13:34:02

B1 Apples

C1 73

--- END OF ROW ---

A2 2015-04-05 03:41:23

B2 Cherries

C2 85

--- END OF ROW ---

A3 2015-04-06 12:46:51

B3 Pears

C3 14

--- END OF ROW ---

Here, we specify that we want the Cell objects in the rectangular area from A1 to C3, and

we get a Generator object containing the Cell objects in that area. To help us visualize

this Generator object, we can use tuple() on it to display its Cell objects in a tuple.

This tuple contains three tuples: one for each row, from the top of the desired area to the

bottom. Each of these three inner tuples contains the Cell objects in one row of our desired

area, from the leftmost cell to the right. So overall, our slice of the sheet contains all

the Cell objects in the area from A1 to C3, starting from the top-left cell and ending with the

bottom-right cell.

To print the values of each cell in the area, we use two for loops. The outer for loop goes

over each row in the slice ➊. Then, for each row, the nested for loop goes through each cell

in that row ➋.

To access the values of cells in a particular row or column, you can also use

a Worksheet object’s rows and columns attribute. These attributes must be converted to lists

with the list() function before you can use the square brackets and an index with them. Enter

the following into the interactive shell:

>>> import openpyxl

>>> wb = openpyxl.load_workbook('example.xlsx')

>>> sheet = wb.active

>>> list(sheet.columns)[1] # Get second column's cells.

(<Cell 'Sheet1'.B1>, <Cell 'Sheet1'.B2>, <Cell 'Sheet1'.B3>, <Cell 'Sheet1'.

B4>, <Cell 'Sheet1'.B5>, <Cell 'Sheet1'.B6>, <Cell 'Sheet1'.B7>)

>>> for cellObj in list(sheet.columns)[1]:

print(cellObj.value)

Apples

Cherries

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Pears

Oranges

Apples

Bananas

Strawberries

Using the rows attribute on a Worksheet object will give you a tuple of tuples. Each of

these inner tuples represents a row, and contains the Cell objects in that row.

The columns attribute also gives you a tuple of tuples, with each of the inner tuples

containing the Cell objects in a particular column. For example.xlsx, since there are 7 rows

and 3 columns, rows gives us a tuple of 7 tuples (each containing 3 Cell objects),

and columns gives us a tuple of 3 tuples (each containing 7 Cell objects).

To access one particular tuple, you can refer to it by its index in the larger tuple. For

example, to get the tuple that represents column B, you use list(sheet.columns)[1]. To get the

tuple containing the Cell objects in column A, you’d use list(sheet.columns)[0]. Once you

have a tuple representing one row or column, you can loop through its Cell objects and print

their values.

Workbooks, Sheets, Cells

As a quick review, here’s a rundown of all the functions, methods, and data types involved in

reading a cell out of a spreadsheet file:

1. Import the openpyxl module.

2. Call the openpyxl.load_workbook() function.

3. Get a Workbook object.

4. Use the active or sheetnames attributes.

5. Get a Worksheet object.

6. Use indexing or the cell() sheet method with row and column keyword arguments.

7. Get a Cell object.

8. Read the Cell object’s value attribute.

PROJECT: READING DATA FROM A SPREADSHEET

Say you have a spreadsheet of data from the 2010 US Census and you have the boring task of

going through its thousands of rows to count both the total population and the number of

census tracts for each county. (A census tract is simply a geographic area defined for the

purposes of the census.) Each row represents a single census tract. We’ll name the

spreadsheet file censuspopdata.xlsx, and you can download it

from https://nostarch.com/automatestuff2/. Its contents look like Figure 13-2.

https://nostarch.com/automatestuff2/
https://automatetheboringstuff.com/2e/chapter13/#calibre_link-1577

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Figure 13-2: The censuspopdata.xlsx spreadsheet

Even though Excel can calculate the sum of multiple selected cells, you’d still have to

select the cells for each of the 3,000-plus counties. Even if it takes just a few seconds to

calculate a county’s population by hand, this would take hours to do for the whole

spreadsheet.

In this project, you’ll write a script that can read from the census spreadsheet file and

calculate statistics for each county in a matter of seconds.

This is what your program does:

1. Reads the data from the Excel spreadsheet

2. Counts the number of census tracts in each county

3. Counts the total population of each county

4. Prints the results

This means your code will need to do the following:

1. Open and read the cells of an Excel document with the openpyxl module.

2. Calculate all the tract and population data and store it in a data structure.

3. Write the data structure to a text file with the .py extension using the pprint module.

Step 1: Read the Spreadsheet Data

There is just one sheet in the censuspopdata.xlsx spreadsheet, named 'Population by Census

Tract', and each row holds the data for a single census tract. The columns are the tract number

(A), the state abbreviation (B), the county name (C), and the population of the tract (D).

Open a new file editor tab and enter the following code. Save the file

as readCensusExcel.py.

#! python3

readCensusExcel.py - Tabulates population and number of census tracts for

each county.

ADUP/18CS55 Module5

Dept. of CSE, BRCE

➊ import openpyxl, pprint

print('Opening workbook...')

➋ wb = openpyxl.load_workbook('censuspopdata.xlsx')

➌ sheet = wb['Population by Census Tract']

countyData = {}

TODO: Fill in countyData with each county's population and tracts.

print('Reading rows...')

➍ for row in range(2, sheet.max_row + 1):

Each row in the spreadsheet has data for one census tract.

state = sheet['B' + str(row)].value

county = sheet['C' + str(row)].value

pop = sheet['D' + str(row)].value

TODO: Open a new text file and write the contents of countyData to it.

This code imports the openpyxl module, as well as the pprint module that you’ll use to

print the final county data ➊. Then it opens the censuspopdata.xlsx file ➋, gets the sheet

with the census data ➌, and begins iterating over its rows ➍.

Note that you’ve also created a variable named countyData, which will contain the

populations and number of tracts you calculate for each county. Before you can store

anything in it, though, you should determine exactly how you’ll structure the data inside it.

Step 2: Populate the Data Structure

The data structure stored in countyData will be a dictionary with state abbreviations as its

keys. Each state abbreviation will map to another dictionary, whose keys are strings of the

county names in that state. Each county name will in turn map to a dictionary with just two

keys, 'tracts' and 'pop'. These keys map to the number of census tracts and population for the

county. For example, the dictionary will look similar to this:

{'AK': {'Aleutians East': {'pop': 3141, 'tracts': 1},

'Aleutians West': {'pop': 5561, 'tracts': 2},

'Anchorage': {'pop': 291826, 'tracts': 55},

'Bethel': {'pop': 17013, 'tracts': 3},

'Bristol Bay': {'pop': 997, 'tracts': 1},

--snip--

If the previous dictionary were stored in countyData, the following expressions would

evaluate like this:

>>> countyData['AK']['Anchorage']['pop']

291826

ADUP/18CS55 Module5

Dept. of CSE, BRCE

>>> countyData['AK']['Anchorage']['tracts']

55

More generally, the countyData dictionary’s keys will look like this:

countyData[state abbrev][county]['tracts']

countyData[state abbrev][county]['pop']

Now that you know how countyData will be structured, you can write the code that will

fill it with the county data. Add the following code to the bottom of your program:

#! python 3

readCensusExcel.py - Tabulates population and number of census tracts for

each county.

--snip--

for row in range(2, sheet.max_row + 1):

Each row in the spreadsheet has data for one census tract.

state = sheet['B' + str(row)].value

county = sheet['C' + str(row)].value

pop = sheet['D' + str(row)].value

Make sure the key for this state exists.

➊ countyData.setdefault(state, {})

Make sure the key for this county in this state exists.

➋ countyData[state].setdefault(county, {'tracts': 0, 'pop': 0})

Each row represents one census tract, so increment by one.

➌ countyData[state][county]['tracts'] += 1

Increase the county pop by the pop in this census tract.

➍ countyData[state][county]['pop'] += int(pop)

TODO: Open a new text file and write the contents of countyData to it.

The last two lines of code perform the actual calculation work, incrementing the value

for tracts ➌ and increasing the value for pop ➍ for the current county on each iteration of

the for loop.

The other code is there because you cannot add a county dictionary as the value for a state

abbreviation key until the key itself exists in countyData. (That

is, countyData['AK']['Anchorage']['tracts'] += 1 will cause an error if the 'AK' key doesn’t

ADUP/18CS55 Module5

Dept. of CSE, BRCE

exist yet.) To make sure the state abbreviation key exists in your data structure, you need to

call the setdefault() method to set a value if one does not already exist for state ➊.

Just as the countyData dictionary needs a dictionary as the value for each state

abbreviation key, each of those dictionaries will need its own dictionary as the value for each

county key ➋. And each of those dictionaries in turn will need keys 'tracts' and 'pop' that start

with the integer value 0. (If you ever lose track of the dictionary structure, look back at the

example dictionary at the start of this section.)

Since setdefault() will do nothing if the key already exists, you can call it on every

iteration of the for loop without a problem.

Step 3: Write the Results to a File

After the for loop has finished, the countyData dictionary will contain all of the population

and tract information keyed by county and state. At this point, you could program more code

to write this to a text file or another Excel spreadsheet. For now, let’s just use

the pprint.pformat() function to write the countyData dictionary value as a massive string to a

file named census2010.py. Add the following code to the bottom of your program (making

sure to keep it unindented so that it stays outside the for loop):

#! python 3

readCensusExcel.py - Tabulates population and number of census tracts for

each county.

--snip--

for row in range(2, sheet.max_row + 1):

--snip--

Open a new text file and write the contents of countyData to it.

print('Writing results...')

resultFile = open('census2010.py', 'w')

resultFile.write('allData = ' + pprint.pformat(countyData))

resultFile.close()

print('Done.')

The pprint.pformat() function produces a string that itself is formatted as valid Python

code. By outputting it to a text file named census2010.py, you’ve generated a Python

program from your Python program! This may seem complicated, but the advantage is that

you can now import census2010.py just like any other Python module. In the interactive shell,

change the current working directory to the folder with your newly created census2010.py file

and then import it:

ADUP/18CS55 Module5

Dept. of CSE, BRCE

>>> import os

>>> import census2010

>>> census2010.allData['AK']['Anchorage']

{'pop': 291826, 'tracts': 55}

>>> anchoragePop = census2010.allData['AK']['Anchorage']['pop']

>>> print('The 2010 population of Anchorage was ' + str(anchoragePop))

The 2010 population of Anchorage was 291826

The readCensusExcel.py program was throwaway code: once you have its results saved

to census2010.py, you won’t need to run the program again. Whenever you need the county

data, you can just run import census2010.

Calculating this data by hand would have taken hours; this program did it in a few

seconds. Using OpenPyXL, you will have no trouble extracting information that is saved to

an Excel spreadsheet and performing calculations on it. You can download the complete

program from https://nostarch.com/automatestuff2/.

Ideas for Similar Programs

Many businesses and offices use Excel to store various types of data, and it’s not uncommon

for spreadsheets to become large and unwieldy. Any program that parses an Excel

spreadsheet has a similar structure: it loads the spreadsheet file, preps some variables or data

structures, and then loops through each of the rows in the spreadsheet. Such a program could

do the following:

 Compare data across multiple rows in a spreadsheet.

 Open multiple Excel files and compare data between spreadsheets.

 Check whether a spreadsheet has blank rows or invalid data in any cells and alert the user if

it does.

 Read data from a spreadsheet and use it as the input for your Python programs.

WRITING EXCEL DOCUMENTS

OpenPyXL also provides ways of writing data, meaning that your programs can create and

edit spreadsheet files. With Python, it’s simple to create spreadsheets with thousands of rows

of data.

Creating and Saving Excel Documents

Call the openpyxl.Workbook() function to create a new, blank Workbook object. Enter the

following into the interactive shell:

>>> import openpyxl

>>> wb = openpyxl.Workbook() # Create a blank workbook.

>>> wb.sheetnames # It starts with one sheet.

https://nostarch.com/automatestuff2/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

['Sheet']

>>> sheet = wb.active

>>> sheet.title

'Sheet'

>>> sheet.title = 'Spam Bacon Eggs Sheet' # Change title.

>>> wb.sheetnames

['Spam Bacon Eggs Sheet']

The workbook will start off with a single sheet named Sheet. You can change the name of

the sheet by storing a new string in its title attribute.

Any time you modify the Workbook object or its sheets and cells, the spreadsheet file will

not be saved until you call the save() workbook method. Enter the following into the

interactive shell (with example.xlsx in the current working directory):

>>> import openpyxl

>>> wb = openpyxl.load_workbook('example.xlsx')

>>> sheet = wb.active

>>> sheet.title = 'Spam Spam Spam'

>>> wb.save('example_copy.xlsx') # Save the workbook.

Here, we change the name of our sheet. To save our changes, we pass a filename as a

string to the save() method. Passing a different filename than the original, such

as 'example_copy.xlsx', saves the changes to a copy of the spreadsheet.

Whenever you edit a spreadsheet you’ve loaded from a file, you should always save the

new, edited spreadsheet to a different filename than the original. That way, you’ll still have

the original spreadsheet file to work with in case a bug in your code caused the new, saved

file to have incorrect or corrupt data.

Creating and Removing Sheets

Sheets can be added to and removed from a workbook with the create_sheet() method

and del operator. Enter the following into the interactive shell:

>>> import openpyxl

>>> wb = openpyxl.Workbook()

>>> wb.sheetnames

['Sheet']

>>> wb.create_sheet() # Add a new sheet.

<Worksheet "Sheet1">

>>> wb.sheetnames

['Sheet', 'Sheet1']

>>> # Create a new sheet at index 0.

>>> wb.create_sheet(index=0, title='First Sheet')

ADUP/18CS55 Module5

Dept. of CSE, BRCE

<Worksheet "First Sheet">

>>> wb.sheetnames

['First Sheet', 'Sheet', 'Sheet1']

>>> wb.create_sheet(index=2, title='Middle Sheet')

<Worksheet "Middle Sheet">

>>> wb.sheetnames

['First Sheet', 'Sheet', 'Middle Sheet', 'Sheet1']

The create_sheet() method returns a new Worksheet object named SheetX, which by

default is set to be the last sheet in the workbook. Optionally, the index and name of the new

sheet can be specified with the index and title keyword arguments.

Continue the previous example by entering the following:

>>> wb.sheetnames

['First Sheet', 'Sheet', 'Middle Sheet', 'Sheet1']

>>> del wb['Middle Sheet']

>>> del wb['Sheet1']

>>> wb.sheetnames

['First Sheet', 'Sheet']

You can use the del operator to delete a sheet from a workbook, just like you can use it to

delete a key-value pair from a dictionary.

Remember to call the save() method to save the changes after adding sheets to or

removing sheets from the workbook.

Writing Values to Cells

Writing values to cells is much like writing values to keys in a dictionary. Enter this into the

interactive shell:

>>> import openpyxl

>>> wb = openpyxl.Workbook()

>>> sheet = wb['Sheet']

>>> sheet['A1'] = 'Hello, world!' # Edit the cell's value.

>>> sheet['A1'].value

'Hello, world!'

If you have the cell’s coordinate as a string, you can use it just like a dictionary key on

the Worksheet object to specify which cell to write to.

PROJECT: UPDATING A SPREADSHEET

In this project, you’ll write a program to update cells in a spreadsheet of produce sales. Your

program will look through the spreadsheet, find specific kinds of produce, and update their

ADUP/18CS55 Module5

Dept. of CSE, BRCE

prices. Download this spreadsheet from https://nostarch.com/automatestuff2/. Figure 13-

3 shows what the spreadsheet looks like.

Figure 13-3: A spreadsheet of produce sales

Each row represents an individual sale. The columns are the type of produce sold (A), the

cost per pound of that produce (B), the number of pounds sold (C), and the total revenue from

the sale (D). The TOTAL column is set to the Excel formula =ROUND(B3*C3, 2), which

multiplies the cost per pound by the number of pounds sold and rounds the result to the

nearest cent. With this formula, the cells in the TOTAL column will automatically update

themselves if there is a change in column B or C.

Now imagine that the prices of garlic, celery, and lemons were entered incorrectly,

leaving you with the boring task of going through thousands of rows in this spreadsheet to

update the cost per pound for any garlic, celery, and lemon rows. You can’t do a simple find-

and-replace for the price, because there might be other items with the same price that you

don’t want to mistakenly “correct.” For thousands of rows, this would take hours to do by

hand. But you can write a program that can accomplish this in seconds.

Your program does the following:

1. Loops over all the rows

2. If the row is for garlic, celery, or lemons, changes the price

This means your code will need to do the following:

1. Open the spreadsheet file.

2. For each row, check whether the value in column A is Celery, Garlic, or Lemon.

3. If it is, update the price in column B.

4. Save the spreadsheet to a new file (so that you don’t lose the old spreadsheet, just in case).

Step 1: Set Up a Data Structure with the Update Information

https://nostarch.com/automatestuff2/
https://automatetheboringstuff.com/2e/chapter13/#calibre_link-1578
https://automatetheboringstuff.com/2e/chapter13/#calibre_link-1578

ADUP/18CS55 Module5

Dept. of CSE, BRCE

The prices that you need to update are as follows:

You could write code like this:

if produceName == 'Celery':

cellObj = 1.19

if produceName == 'Garlic':

cellObj = 3.07

if produceName == 'Lemon':

cellObj = 1.27

Having the produce and updated price data hardcoded like this is a bit inelegant. If you

needed to update the spreadsheet again with different prices or different produce, you would

have to change a lot of the code. Every time you change code, you risk introducing bugs.

A more flexible solution is to store the corrected price information in a dictionary and

write your code to use this data structure. In a new file editor tab, enter the following code:

#! python3

updateProduce.py - Corrects costs in produce sales spreadsheet.

import openpyxl

wb = openpyxl.load_workbook('produceSales.xlsx')

sheet = wb['Sheet']

The produce types and their updated prices

PRICE_UPDATES = {'Garlic': 3.07,

'Celery': 1.19,

'Lemon': 1.27}

TODO: Loop through the rows and update the prices.

Save this as updateProduce.py. If you need to update the spreadsheet again, you’ll need to

update only the PRICE_UPDATES dictionary, not any other code.

Step 2: Check All Rows and Update Incorrect Prices

The next part of the program will loop through all the rows in the spreadsheet. Add the

following code to the bottom of updateProduce.py:

Celery 1.19

Garlic 3.07

Lemon 1.27

ADUP/18CS55 Module5

Dept. of CSE, BRCE

#! python3

updateProduce.py - Corrects costs in produce sales spreadsheet.

--snip--

Loop through the rows and update the prices.

➊ for rowNum in range(2, sheet.max_row): # skip the first row

➋ produceName = sheet.cell(row=rowNum, column=1).value

➌ if produceName in PRICE_UPDATES:

sheet.cell(row=rowNum, column=2).value = PRICE_UPDATES[produceName]

➍ wb.save('updatedProduceSales.xlsx')

We loop through the rows starting at row 2, since row 1 is just the header ➊. The cell in

column 1 (that is, column A) will be stored in the variable produceName ➋.

If produceName exists as a key in the PRICE_UPDATES dictionary ➌, then you know this

is a row that must have its price corrected. The correct price will be

in PRICE_UPDATES[produceName].

Notice how clean using PRICE_UPDATES makes the code. Only one if statement, rather

than code like if produceName == 'Garlic': , is necessary for every type of produce to update.

And since the code uses the PRICE_UPDATES dictionary instead of hardcoding the produce

names and updated costs into the for loop, you modify only

the PRICE_UPDATES dictionary and not the code if the produce sales spreadsheet needs

additional changes.

After going through the entire spreadsheet and making changes, the code saves

the Workbook object to updatedProduceSales.xlsx ➍. It doesn’t overwrite the old

spreadsheet just in case there’s a bug in your program and the updated spreadsheet is wrong.

After checking that the updated spreadsheet looks right, you can delete the old spreadsheet.

You can download the complete source code for this program

from https://nostarch.com/automatestuff2/.

Ideas for Similar Programs

Since many office workers use Excel spreadsheets all the time, a program that can

automatically edit and write Excel files could be really useful. Such a program could do the

following:

 Read data from one spreadsheet and write it to parts of other spreadsheets.

 Read data from websites, text files, or the clipboard and write it to a spreadsheet.

 Automatically “clean up” data in spreadsheets. For example, it could use regular expressions

to read multiple formats of phone numbers and edit them to a single, standard format.

SETTING THE FONT STYLE OF CELLS

https://nostarch.com/automatestuff2/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Styling certain cells, rows, or columns can help you emphasize important areas in your

spreadsheet. In the produce spreadsheet, for example, your program could apply bold text to

the potato, garlic, and parsnip rows. Or perhaps you want to italicize every row with a cost

per pound greater than $5. Styling parts of a large spreadsheet by hand would be tedious, but

your programs can do it instantly.

To customize font styles in cells, important, import the Font() function from

the openpyxl.styles module.

from openpyxl.styles import Font

This allows you to type Font() instead of openpyxl.styles.Font(). (See “Importing

Modules” on page 47 to review this style of import statement.)

Here’s an example that creates a new workbook and sets cell A1 to have a 24-point,

italicized font. Enter the following into the interactive shell:

>>> import openpyxl

>>> from openpyxl.styles import Font

>>> wb = openpyxl.Workbook()

>>> sheet = wb['Sheet']

➊ >>> italic24Font = Font(size=24, italic=True) # Create a font.

➋ >>> sheet['A1'].font = italic24Font # Apply the font to A1.

>>> sheet['A1'] = 'Hello, world!'

>>> wb.save('styles.xlsx')

In this example, Font(size=24, italic=True) returns a Font object, which is stored

in italic24Font ➊. The keyword arguments to Font(), size and italic, configure

the Font object’s styling information. And when sheet['A1'].font is assigned

the italic24Font object ➋, all that font styling information gets applied to cell A1.

FONT OBJECTS

To set font attributes, you pass keyword arguments to Font(). Table 13-2 shows the possible

keyword arguments for the Font() function.

Table 13-2: Keyword Arguments for Font Objects

Keyword argument Data type Description

name String The font name, such as 'Calibri' or 'Times New Roman'

size Integer The point size

bold Boolean True, for bold font

italic Boolean True, for italic font

https://automatetheboringstuff.com/2e/chapter13/#calibre_link-125
https://automatetheboringstuff.com/2e/chapter13/#calibre_link-125
https://automatetheboringstuff.com/2e/chapter13/#calibre_link-827
https://automatetheboringstuff.com/2e/chapter13/#calibre_link-1579

ADUP/18CS55 Module5

Dept. of CSE, BRCE

You can call Font() to create a Font object and store that Font object in a variable. You

then assign that variable to a Cell object’s font attribute. For example, this code creates

various font styles:

>>> import openpyxl

>>> from openpyxl.styles import Font

>>> wb = openpyxl.Workbook()

>>> sheet = wb['Sheet']

>>> fontObj1 = Font(name='Times New Roman', bold=True)

>>> sheet['A1'].font = fontObj1

>>> sheet['A1'] = 'Bold Times New Roman'

>>> fontObj2 = Font(size=24, italic=True)

>>> sheet['B3'].font = fontObj2

>>> sheet['B3'] = '24 pt Italic'

>>> wb.save('styles.xlsx')

Here, we store a Font object in fontObj1 and then set the A1 Cell object’s font attribute

to fontObj1. We repeat the process with another Font object to set the font of a second cell.

After you run this code, the styles of the A1 and B3 cells in the spreadsheet will be set to

custom font styles, as shown in Figure 13-4.

Figure 13-4: A spreadsheet with custom font styles

For cell A1, we set the font name to 'Times New Roman' and set bold to true, so our text

appears in bold Times New Roman. We didn’t specify a size, so the openpyxl default, 11, is

used. In cell B3, our text is italic, with a size of 24; we didn’t specify a font name, so

the openpyxl default, Calibri, is used.

FORMULAS

Excel formulas, which begin with an equal sign, can configure cells to contain values

calculated from other cells. In this section, you’ll use the openpyxl module to

programmatically add formulas to cells, just like any normal value. For example:

https://automatetheboringstuff.com/2e/chapter13/#calibre_link-1580

ADUP/18CS55 Module5

Dept. of CSE, BRCE

>>> sheet['B9'] = '=SUM(B1:B8)'

This will store =SUM(B1:B8) as the value in cell B9. This sets the B9 cell to a formula

that calculates the sum of values in cells B1 to B8. You can see this in action in Figure 13-5.

Figure 13-5: Cell B9 contains the formula =SUM(B1:B8), which adds the cells B1 to B8.

An Excel formula is set just like any other text value in a cell. Enter the following into the

interactive shell:

>>> import openpyxl

>>> wb = openpyxl.Workbook()

>>> sheet = wb.active

>>> sheet['A1'] = 200

>>> sheet['A2'] = 300

>>> sheet['A3'] = '=SUM(A1:A2)' # Set the formula.

>>> wb.save('writeFormula.xlsx')

The cells in A1 and A2 are set to 200 and 300, respectively. The value in cell A3 is set to

a formula that sums the values in A1 and A2. When the spreadsheet is opened in Excel, A3

will display its value as 500.

Excel formulas offer a level of programmability for spreadsheets but can quickly become

unmanageable for complicated tasks. For example, even if you’re deeply familiar with Excel

formulas, it’s a headache to try to decipher what =IFERROR(TRIM(IF(LEN(VLOOKUP(F7,

Sheet2!A1:B10000, 2, FALSE))>0,SUBSTITUTE(VLOOKUP(F7,

https://automatetheboringstuff.com/2e/chapter13/#calibre_link-1581

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Sheet2!A1:B10000, 2, FALSE), " ", ""),"")), "") actually does. Python code is much

more readable.

ADJUSTING ROWS AND COLUMNS

In Excel, adjusting the sizes of rows and columns is as easy as clicking and dragging the

edges of a row or column header. But if you need to set a row or column’s size based on its

cells’ contents or if you want to set sizes in a large number of spreadsheet files, it will be

much quicker to write a Python program to do it.

Rows and columns can also be hidden entirely from view. Or they can be “frozen” in

place so that they are always visible on the screen and appear on every page when the

spreadsheet is printed (which is handy for headers).

Setting Row Height and Column Width

Worksheet objects have row_dimensions and column_dimensions attributes that control row

heights and column widths. Enter this into the interactive shell:

>>> import openpyxl

>>> wb = openpyxl.Workbook()

>>> sheet = wb.active

>>> sheet['A1'] = 'Tall row'

>>> sheet['B2'] = 'Wide column'

>>> # Set the height and width:

>>> sheet.row_dimensions[1].height = 70

>>> sheet.column_dimensions['B'].width = 20

>>> wb.save('dimensions.xlsx')

A sheet’s row_dimensions and column_dimensions are dictionary-like

values; row_dimensions contains RowDimension objects

and column_dimensions contains ColumnDimension objects. In row_dimensions, you can

access one of the objects using the number of the row (in this case, 1 or 2).

In column_dimensions, you can access one of the objects using the letter of the column (in

this case, A or B).

The dimensions.xlsx spreadsheet looks like Figure 13-6.

Figure 13-6: Row 1 and column B set to larger heights and widths

https://automatetheboringstuff.com/2e/chapter13/#calibre_link-1582

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Once you have the RowDimension object, you can set its height. Once you have

the ColumnDimension object, you can set its width. The row height can be set to an integer

or float value between 0 and 409. This value represents the height measured in points, where

one point equals 1/72 of an inch. The default row height is 12.75. The column width can be

set to an integer or float value between 0 and 255. This value represents the number of

characters at the default font size (11 point) that can be displayed in the cell. The default

column width is 8.43 characters. Columns with widths of 0 or rows with heights of 0 are

hidden from the user.

Merging and Unmerging Cells

A rectangular area of cells can be merged into a single cell with the merge_cells() sheet

method. Enter the following into the interactive shell:

>>> import openpyxl

>>> wb = openpyxl.Workbook()

>>> sheet = wb.active

>>> sheet.merge_cells('A1:D3') # Merge all these cells.

>>> sheet['A1'] = 'Twelve cells merged together.'

>>> sheet.merge_cells('C5:D5') # Merge these two cells.

>>> sheet['C5'] = 'Two merged cells.'

>>> wb.save('merged.xlsx')

The argument to merge_cells() is a single string of the top-left and bottom-right cells of

the rectangular area to be merged: 'A1:D3' merges 12 cells into a single cell. To set the value

of these merged cells, simply set the value of the top-left cell of the merged group.

When you run this code, merged.xlsx will look like Figure 13-7.

Figure 13-7: Merged cells in a spreadsheet

To unmerge cells, call the unmerge_cells() sheet method. Enter this into the interactive

shell:

>>> import openpyxl

>>> wb = openpyxl.load_workbook('merged.xlsx')

https://automatetheboringstuff.com/2e/chapter13/#calibre_link-1583

ADUP/18CS55 Module5

Dept. of CSE, BRCE

>>> sheet = wb.active

>>> sheet.unmerge_cells('A1:D3') # Split these cells up.

>>> sheet.unmerge_cells('C5:D5')

>>> wb.save('merged.xlsx')

If you save your changes and then take a look at the spreadsheet, you’ll see that the

merged cells have gone back to being individual cells.

Freezing Panes

For spreadsheets too large to be displayed all at once, it’s helpful to “freeze” a few of the top

rows or leftmost columns onscreen. Frozen column or row headers, for example, are always

visible to the user even as they scroll through the spreadsheet. These are known as freeze

panes. In OpenPyXL, each Worksheet object has a freeze_panes attribute that can be set to

a Cell object or a string of a cell’s coordinates. Note that all rows above and all columns to

the left of this cell will be frozen, but the row and column of the cell itself will not be frozen.

To unfreeze all panes, set freeze_panes to None or 'A1'. Table 13-3 shows which rows and

columns will be frozen for some example settings of freeze_panes.

Table 13-3: Frozen Pane Examples

freeze_panes setting Rows and columns frozen

sheet.freeze_panes = 'A2' Row 1

sheet.freeze_panes = 'B1' Column A

sheet.freeze_panes = 'C1' Columns A and B

sheet.freeze_panes = 'C2' Row 1 and columns A and B

sheet.freeze_panes = 'A1' or sheet.freeze_panes = None No frozen panes

Make sure you have the produce sales spreadsheet

from https://nostarch.com/automatestuff2/. Then enter the following into the interactive shell:

>>> import openpyxl

>>> wb = openpyxl.load_workbook('produceSales.xlsx')

>>> sheet = wb.active

>>> sheet.freeze_panes = 'A2' # Freeze the rows above A2.

>>> wb.save('freezeExample.xlsx')

If you set the freeze_panes attribute to 'A2', row 1 will always be viewable, no matter

where the user scrolls in the spreadsheet. You can see this in Figure 13-8.

https://automatetheboringstuff.com/2e/chapter13/#calibre_link-1584
https://nostarch.com/automatestuff2/
https://automatetheboringstuff.com/2e/chapter13/#calibre_link-1585

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Figure 13-8: With freeze_panes set to 'A2', row 1 is always visible, even as the user scrolls

down.

CHARTS

OpenPyXL supports creating bar, line, scatter, and pie charts using the data in a sheet’s cells.

To make a chart, you need to do the following:

1. Create a Reference object from a rectangular selection of cells.

2. Create a Series object by passing in the Reference object.

3. Create a Chart object.

4. Append the Series object to the Chart object.

5. Add the Chart object to the Worksheet object, optionally specifying which cell should be the

top-left corner of the chart.

The Reference object requires some explaining. You create Reference objects by calling

the openpyxl.chart.Reference() function and passing three arguments:

1. The Worksheet object containing your chart data.

2. A tuple of two integers, representing the top-left cell of the rectangular selection of cells

containing your chart data: the first integer in the tuple is the row, and the second is the

column. Note that 1 is the first row, not 0.

3. A tuple of two integers, representing the bottom-right cell of the rectangular selection of

cells containing your chart data: the first integer in the tuple is the row, and the second is the

column.

Figure 13-9 shows some sample coordinate arguments.

https://automatetheboringstuff.com/2e/chapter13/#calibre_link-1586

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Figure 13-9: From left to right: (1, 1), (10, 1); (3, 2), (6, 4); (5, 3), (5, 3)

Enter this interactive shell example to create a bar chart and add it to the spreadsheet:

>>> import openpyxl

>>> wb = openpyxl.Workbook()

>>> sheet = wb.active

>>> for i in range(1, 11): # create some data in column A

... sheet['A' + str(i)] = i

...

>>> refObj = openpyxl.chart.Reference(sheet, min_col=1, min_row=1, max_col=1,

max_row=10)

>>> seriesObj = openpyxl.chart.Series(refObj, title='First series')

>>> chartObj = openpyxl.chart.BarChart()

>>> chartObj.title = 'My Chart'

>>> chartObj.append(seriesObj)

>>> sheet.add_chart(chartObj, 'C5')

>>> wb.save('sampleChart.xlsx')

This produces a spreadsheet that looks like Figure 13-10.

https://automatetheboringstuff.com/2e/chapter13/#calibre_link-1587

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Figure 13-10: A spreadsheet with a chart added

We’ve created a bar chart by calling openpyxl.chart.BarChart(). You can also create line

charts, scatter charts, and pie charts by

calling openpyxl.charts.LineChart(), openpyxl.chart.ScatterChart(),

and openpyxl.chart.PieChart().

SUMMARY

Often the hard part of processing information isn’t the processing itself but simply getting the

data in the right format for your program. But once you have your spreadsheet loaded into

Python, you can extract and manipulate its data much faster than you could by hand.

You can also generate spreadsheets as output from your programs. So if colleagues need

your text file or PDF of thousands of sales contacts transferred to a spreadsheet file, you

won’t have to tediously copy and paste it all into Excel.

Equipped with the openpyxl module and some programming knowledge, you’ll find

processing even the biggest spreadsheets a piece of cake.

In the next chapter, we’ll take a look at using Python to interact with another spreadsheet

program: the popular online Google Sheets application.

PRACTICE QUESTIONS

For the following questions, imagine you have a Workbook object in the variable wb,

a Worksheet object in sheet, a Cell object in cell, a Comment object in comm, and

an Image object in img.

1. What does the openpyxl.load_workbook() function return?

ADUP/18CS55 Module5

Dept. of CSE, BRCE

2. What does the wb.sheetnames workbook attribute contain?

3. How would you retrieve the Worksheet object for a sheet named 'Sheet1'?

4. How would you retrieve the Worksheet object for the workbook’s active sheet?

5. How would you retrieve the value in the cell C5?

6. How would you set the value in the cell C5 to "Hello"?

7. How would you retrieve the cell’s row and column as integers?

8. What do the sheet.max_column and sheet.max_row sheet attributes hold, and what is the

data type of these attributes?

9. If you needed to get the integer index for column 'M', what function would you need to

call?

10. If you needed to get the string name for column 14, what function would you need to

call?

11. How can you retrieve a tuple of all the Cell objects from A1 to F1?

12. How would you save the workbook to the filename example.xlsx?

13. How do you set a formula in a cell?

14. If you want to retrieve the result of a cell’s formula instead of the cell’s formula itself,

what must you do first?

15. How would you set the height of row 5 to 100?

16. How would you hide column C?

17. What is a freeze pane?

18. What five functions and methods do you have to call to create a bar chart?

PRACTICE PROJECTS

For practice, write programs that perform the following tasks.

Multiplication Table Maker

Create a program multiplicationTable.py that takes a number N from the command line and

creates an N×N multiplication table in an Excel spreadsheet. For example, when the program

is run like this:

py multiplicationTable.py 6

. . . it should create a spreadsheet that looks like Figure 13-11.

https://automatetheboringstuff.com/2e/chapter13/#calibre_link-1606

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Figure 13-11: A multiplication table generated in a spreadsheet

Row 1 and column A should be used for labels and should be in bold.

Blank Row Inserter

Create a program blankRowInserter.py that takes two integers and a filename string as

command line arguments. Let’s call the first integer N and the second integer M. Starting at

row N, the program should insert M blank rows into the spreadsheet. For example, when the

program is run like this:

python blankRowInserter.py 3 2 myProduce.xlsx

. . . the “before” and “after” spreadsheets should look like Figure 13-12.

Figure 13-12: Before (left) and after (right) the two blank rows are inserted at row 3

You can write this program by reading in the contents of the spreadsheet. Then, when

writing out the new spreadsheet, use a for loop to copy the first N lines. For the remaining

lines, add M to the row number in the output spreadsheet.

Spreadsheet Cell Inverter

Write a program to invert the row and column of the cells in the spreadsheet. For example,

the value at row 5, column 3 will be at row 3, column 5 (and vice versa). This should be done

for all cells in the spreadsheet. For example, the “before” and “after” spreadsheets would look

something like Figure 13-13.

https://automatetheboringstuff.com/2e/chapter13/#calibre_link-1607
https://automatetheboringstuff.com/2e/chapter13/#calibre_link-1608

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Figure 13-13: The spreadsheet before (top) and after (bottom) inversion

You can write this program by using nested for loops to read the spreadsheet’s data into a

list of lists data structure. This data structure could have sheetData[x][y] for the cell at

column x and row y. Then, when writing out the new spreadsheet, use sheetData[y][x] for the

cell at column x and row y.

Text Files to Spreadsheet

Write a program to read in the contents of several text files (you can make the text files

yourself) and insert those contents into a spreadsheet, with one line of text per row. The lines

of the first text file will be in the cells of column A, the lines of the second text file will be in

the cells of column B, and so on.

Use the readlines() File object method to return a list of strings, one string per line in the

file. For the first file, output the first line to column 1, row 1. The second line should be

written to column 1, row 2, and so on. The next file that is read with readlines() will be

written to column 2, the next file to column 3, and so on.

Spreadsheet to Text Files

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Write a program that performs the tasks of the previous program in reverse order: the

program should open a spreadsheet and write the cells of column A into one text file, the cells

of column B into another text file, and so on.

WORKING WITH PDF AND WORD DOCUMENTS

PDF and Word documents are binary files, which makes them much more complex than

plaintext files. In addition to text, they store lots of font, color, and layout information. If you

want your programs to read or write to PDFs or Word documents, you’ll need to do more

than simply pass their filenames to open().

Fortunately, there are Python modules that make it easy for you to interact with PDFs and

Word documents. This chapter will cover two such modules: PyPDF2 and Python-Docx.

PDF DOCUMENTS

PDF stands for Portable Document Format and uses the .pdf file extension. Although PDFs

support many features, this chapter will focus on the two things you’ll be doing most often

with them: reading text content from PDFs and crafting new PDFs from existing documents.

The module you’ll use to work with PDFs is PyPDF2 version 1.26.0. It’s important that

you install this version because future versions of PyPDF2 may be incompatible with the

code. To install it, run pip install --user PyPDF2==1.26.0 from the command line. This

module name is case sensitive, so make sure the y is lowercase and everything else is

uppercase. (Check out Appendix A for full details about installing third-party modules.) If the

module was installed correctly, running import PyPDF2 in the interactive shell shouldn’t

display any errors.

Extracting Text from PDFs

PyPDF2 does not have a way to extract images, charts, or other media from PDF documents,

but it can extract text and return it as a Python string. To start learning how PyPDF2 works,

we’ll use it on the example PDF shown in Figure 15-1.

THE PROBLEMATIC PDF FORMAT

While PDF files are great for laying out text in a way that’s easy for people to print and read,

they’re not straightforward for software to parse into plaintext. As a result, PyPDF2 might

make mistakes when extracting text from a PDF and may even be unable to open some PDFs

at all. There isn’t much you can do about this, unfortunately. PyPDF2 may simply be unable

to work with some of your particular PDF files. That said, I haven’t found any PDF files so

far that can’t be opened with PyPDF2.

https://automatetheboringstuff.com/2e/chapter15/#calibre_link-2
https://automatetheboringstuff.com/2e/chapter15/#calibre_link-3

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Figure 15-1: The PDF page that we will be extracting text from

Download this PDF from https://nostarch.com/automatestuff2/ and enter the following

into the interactive shell:

>>> import PyPDF2

>>> pdfFileObj = open('meetingminutes.pdf', 'rb')

>>> pdfReader = PyPDF2.PdfFileReader(pdfFileObj)

➊ >>> pdfReader.numPages

19

➋ >>> pageObj = pdfReader.getPage(0)

➌ >>> pageObj.extractText()

'OOFFFFIICCIIAALL BBOOAARRDD MMIINNUUTTEESS Meeting of March 7,

2015 \n The Board of Elementary and Secondary Education shall

provide leadership and create policies for education that expand opportunities

for children, empower families and communities, and advance Louisiana in an

increasingly competitive global market. BOARD of ELEMENTARY and SECONDARY

EDUCATION '

>>> pdfFileObj.close()

First, import the PyPDF2 module. Then open meetingminutes.pdf in read binary mode and

store it in pdfFileObj. To get a PdfFileReader object that represents this PDF,

https://nostarch.com/automatestuff2/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

call PyPDF2.PdfFileReader() and pass it pdfFileObj. Store this PdfFileReader object

in pdfReader.

The total number of pages in the document is stored in the numPages attribute of

a PdfFileReader object ➊. The example PDF has 19 pages, but let’s extract text from only

the first page.

To extract text from a page, you need to get a Page object, which represents a single page

of a PDF, from a PdfFileReader object. You can get a Page object by calling

the getPage() method ➋ on a PdfFileReader object and passing it the page number of the

page you’re interested in—in our case, 0.

PyPDF2 uses a zero-based index for getting pages: The first page is page 0, the second

is page 1, and so on. This is always the case, even if pages are numbered differently within

the document. For example, say your PDF is a three-page excerpt from a longer report, and

its pages are numbered 42, 43, and 44. To get the first page of this document, you would want

to call pdfReader.getPage(0), not getPage(42) or getPage(1).

Once you have your Page object, call its extractText() method to return a string of the

page’s text ➌. The text extraction isn’t perfect: The text Charles E. “Chas” Roemer,

President from the PDF is absent from the string returned by extractText(), and the spacing is

sometimes off. Still, this approximation of the PDF text content may be good enough for your

program.

Decrypting PDFs

Some PDF documents have an encryption feature that will keep them from being read until

whoever is opening the document provides a password. Enter the following into the

interactive shell with the PDF you downloaded, which has been encrypted with the

password rosebud:

>>> import PyPDF2

>>> pdfReader = PyPDF2.PdfFileReader(open('encrypted.pdf', 'rb'))

➊ >>> pdfReader.isEncrypted

True

>>> pdfReader.getPage(0)

➋ Traceback (most recent call last):

File "<pyshell#173>", line 1, in <module>

pdfReader.getPage()

--snip--

File "C:\Python34\lib\site-packages\PyPDF2\pdf.py", line 1173, in getObject

raise utils.PdfReadError("file has not been decrypted")

PyPDF2.utils.PdfReadError: file has not been decrypted

>>> pdfReader = PyPDF2.PdfFileReader(open('encrypted.pdf', 'rb'))

➌ >>> pdfReader.decrypt('rosebud')

1

>>> pageObj = pdfReader.getPage(0)

https://automatetheboringstuff.com/2e/chapter15/#calibre_link-4

ADUP/18CS55 Module5

Dept. of CSE, BRCE

All PdfFileReader objects have an isEncrypted attribute that is True if the PDF is

encrypted and False if it isn’t ➊. Any attempt to call a function that reads the file before it

has been decrypted with the correct password will result in an error ➋.

NOTE

Due to a bug in PyPDF2 version 1.26.0, calling getPage() on an encrypted PDF before

calling decrypt() on it causes future getPage() calls to fail with the following

error: IndexError: list index out of range. This is why our example reopened the file with a

new PdfFileReader object.

To read an encrypted PDF, call the decrypt() function and pass the password as a string ➌

. After you call decrypt() with the correct password, you’ll see that calling getPage() no

longer causes an error. If given the wrong password, the decrypt() function will

return 0 and getPage() will continue to fail. Note that the decrypt() method decrypts only

the PdfFileReader object, not the actual PDF file. After your program terminates, the file on

your hard drive remains encrypted. Your program will have to call decrypt() again the next

time it is run.

Creating PDFs

PyPDF2’s counterpart to PdfFileReader is PdfFileWriter, which can create new PDF files.

But PyPDF2 cannot write arbitrary text to a PDF like Python can do with plaintext files.

Instead, PyPDF2’s PDF-writing capabilities are limited to copying pages from other PDFs,

rotating pages, overlaying pages, and encrypting files.

PyPDF2 doesn’t allow you to directly edit a PDF. Instead, you have to create a new PDF

and then copy content over from an existing document. The examples in this section will

follow this general approach:

1. Open one or more existing PDFs (the source PDFs) into PdfFileReader objects.

2. Create a new PdfFileWriter object.

3. Copy pages from the PdfFileReader objects into the PdfFileWriter object.

4. Finally, use the PdfFileWriter object to write the output PDF.

Creating a PdfFileWriter object creates only a value that represents a PDF document in

Python. It doesn’t create the actual PDF file. For that, you must call

the PdfFileWriter’s write() method.

The write() method takes a regular File object that has been opened in write-binary mode.

You can get such a File object by calling Python’s open() function with two arguments: the

string of what you want the PDF’s filename to be and 'wb' to indicate the file should be

opened in write-binary mode.

If this sounds a little confusing, don’t worry—you’ll see how this works in the following

code examples.

Copying Pages

You can use PyPDF2 to copy pages from one PDF document to another. This allows you to

combine multiple PDF files, cut unwanted pages, or reorder pages.

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Download meetingminutes.pdf and meetingminutes2.pdf from https://nostarch.com/autom

atestuff2/ and place the PDFs in the current working directory. Enter the following into the

interactive shell:

>>> import PyPDF2

>>> pdf1File = open('meetingminutes.pdf', 'rb')

>>> pdf2File = open('meetingminutes2.pdf', 'rb')

➊ >>> pdf1Reader = PyPDF2.PdfFileReader(pdf1File)

➋ >>> pdf2Reader = PyPDF2.PdfFileReader(pdf2File)

➌ >>> pdfWriter = PyPDF2.PdfFileWriter()

>>> for pageNum in range(pdf1Reader.numPages):

➍ pageObj = pdf1Reader.getPage(pageNum)

➎ pdfWriter.addPage(pageObj)

>>> for pageNum in range(pdf2Reader.numPages):

➍ pageObj = pdf2Reader.getPage(pageNum)

➎ pdfWriter.addPage(pageObj)

➏ >>> pdfOutputFile = open('combinedminutes.pdf', 'wb')

>>> pdfWriter.write(pdfOutputFile)

>>> pdfOutputFile.close()

>>> pdf1File.close()

>>> pdf2File.close()

Open both PDF files in read binary mode and store the two resulting File objects

in pdf1File and pdf2File. Call PyPDF2.PdfFileReader() and pass it pdf1File to get

a PdfFileReader object for meetingminutes.pdf ➊. Call it again and pass it pdf2File to get

a PdfFileReader object for meetingminutes2.pdf ➋. Then create a new PdfFileWriter object,

which represents a blank PDF document ➌.

Next, copy all the pages from the two source PDFs and add them to

the PdfFileWriter object. Get the Page object by calling getPage() on

a PdfFileReader object ➍. Then pass that Page object to your

PdfFileWriter’s addPage() method ➎. These steps are done first for pdf1Reader and then

again for pdf2Reader. When you’re done copying pages, write a new PDF

called combinedminutes.pdf by passing a File object to the PdfFileWriter’s write() method ➏.

NOTE

PyPDF2 cannot insert pages in the middle of a PdfFileWriter object;

the addPage() method will only add pages to the end.

You have now created a new PDF file that combines the pages

from meetingminutes.pdf and meetingminutes2.pdf into a single document. Remember that

https://nostarch.com/automatestuff2/
https://nostarch.com/automatestuff2/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

the File object passed to PyPDF2.PdfFileReader() needs to be opened in read-binary mode by

passing 'rb' as the second argument to open(). Likewise, the File object passed

to PyPDF2.PdfFileWriter() needs to be opened in write-binary mode with 'wb'.

Rotating Pages

The pages of a PDF can also be rotated in 90-degree increments with

the rotateClockwise() and rotateCounterClockwise() methods. Pass one of the

integers 90, 180, or 270 to these methods. Enter the following into the interactive shell, with

the meetingminutes.pdf file in the current working directory:

>>> import PyPDF2

>>> minutesFile = open('meetingminutes.pdf', 'rb')

>>> pdfReader = PyPDF2.PdfFileReader(minutesFile)

➊ >>> page = pdfReader.getPage(0)

➋ >>> page.rotateClockwise(90)

{'/Contents': [IndirectObject(961, 0), IndirectObject(962, 0),

--snip--

}

>>> pdfWriter = PyPDF2.PdfFileWriter()

>>> pdfWriter.addPage(page)

➌ >>> resultPdfFile = open('rotatedPage.pdf', 'wb')

>>> pdfWriter.write(resultPdfFile)

>>> resultPdfFile.close()

>>> minutesFile.close()

Here we use getPage(0) to select the first page of the PDF ➊, and then we

call rotateClockwise(90) on that page ➋. We write a new PDF with the rotated page and save

it as rotatedPage.pdf ➌.

The resulting PDF will have one page, rotated 90 degrees clockwise, as shown in Figure

15-2. The return values from rotateClockwise() and rotateCounterClockwise() contain a lot of

information that you can ignore.

https://automatetheboringstuff.com/2e/chapter15/#calibre_link-5
https://automatetheboringstuff.com/2e/chapter15/#calibre_link-5

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Figure 15-2: The rotatedPage.pdf file with the page rotated 90 degrees clockwise

Overlaying Pages

PyPDF2 can also overlay the contents of one page over another, which is useful for adding a

logo, timestamp, or watermark to a page. With Python, it’s easy to add watermarks to

multiple files and only to pages your program specifies.

Download watermark.pdf from https://nostarch.com/automatestuff2/ and place the PDF in

the current working directory along with meetingminutes.pdf. Then enter the following into

the interactive shell:

>>> import PyPDF2

>>> minutesFile = open('meetingminutes.pdf', 'rb')

➊ >>> pdfReader = PyPDF2.PdfFileReader(minutesFile)

➋ >>> minutesFirstPage = pdfReader.getPage(0)

➌ >>> pdfWatermarkReader = PyPDF2.PdfFileReader(open('watermark.pdf', 'rb'))

➍ >>> minutesFirstPage.mergePage(pdfWatermarkReader.getPage(0))

➎ >>> pdfWriter = PyPDF2.PdfFileWriter()

➏ >>> pdfWriter.addPage(minutesFirstPage)

➐ >>> for pageNum in range(1, pdfReader.numPages):

https://nostarch.com/automatestuff2/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

pageObj = pdfReader.getPage(pageNum)

pdfWriter.addPage(pageObj)

>>> resultPdfFile = open('watermarkedCover.pdf', 'wb')

>>> pdfWriter.write(resultPdfFile)

>>> minutesFile.close()

>>> resultPdfFile.close()

Here we make a PdfFileReader object of meetingminutes.pdf ➊. We call getPage(0) to get

a Page object for the first page and store this object in minutesFirstPage ➋. We then make

a PdfFileReader object for watermark.pdf ➌ and call mergePage() on minutesFirstPage ➍.

The argument we pass to mergePage() is a Page object for the first page of watermark.pdf.

Now that we’ve called mergePage() on minutesFirstPage, minutesFirstPage represents the

watermarked first page. We make a PdfFileWriter object ➎ and add the watermarked first

page ➏. Then we loop through the rest of the pages in meetingminutes.pdf and add them to

the PdfFileWriter object ➐. Finally, we open a new PDF called watermarkedCover.pdf and

write the contents of the PdfFileWriter to the new PDF.

Figure 15-3 shows the results. Our new PDF, watermarkedCover.pdf, has all the contents

of the meetingminutes.pdf, and the first page is watermarked.

Figure 15-3: The original PDF (left), the watermark PDF (center), and the merged PDF

(right)

Encrypting PDFs

A PdfFileWriter object can also add encryption to a PDF document. Enter the following into

the interactive shell:

https://automatetheboringstuff.com/2e/chapter15/#calibre_link-6

ADUP/18CS55 Module5

Dept. of CSE, BRCE

>>> import PyPDF2

>>> pdfFile = open('meetingminutes.pdf', 'rb')

>>> pdfReader = PyPDF2.PdfFileReader(pdfFile)

>>> pdfWriter = PyPDF2.PdfFileWriter()

>>> for pageNum in range(pdfReader.numPages):

pdfWriter.addPage(pdfReader.getPage(pageNum))

➊ >>> pdfWriter.encrypt('swordfish')

>>> resultPdf = open('encryptedminutes.pdf', 'wb')

>>> pdfWriter.write(resultPdf)

>>> resultPdf.close()

Before calling the write() method to save to a file, call the encrypt() method and pass it a

password string ➊. PDFs can have a user password (allowing you to view the PDF) and

an owner password (allowing you to set permissions for printing, commenting, extracting

text, and other features). The user password and owner password are the first and second

arguments to encrypt(), respectively. If only one string argument is passed to encrypt(), it will

be used for both passwords.

In this example, we copied the pages of meetingminutes.pdf to a PdfFileWriter object. We

encrypted the PdfFileWriter with the password swordfish, opened a new PDF

called encryptedminutes.pdf, and wrote the contents of the PdfFileWriter to the new PDF.

Before anyone can view encryptedminutes.pdf, they’ll have to enter this password. You may

want to delete the original, unencrypted meetingminutes.pdf file after ensuring its copy was

correctly encrypted.

PROJECT: COMBINING SELECT PAGES FROM MANY PDFS

Say you have the boring job of merging several dozen PDF documents into a single PDF file.

Each of them has a cover sheet as the first page, but you don’t want the cover sheet repeated

in the final result. Even though there are lots of free programs for combining PDFs, many of

them simply merge entire files together. Let’s write a Python program to customize which

pages you want in the combined PDF.

At a high level, here’s what the program will do:

1. Find all PDF files in the current working directory.

2. Sort the filenames so the PDFs are added in order.

3. Write each page, excluding the first page, of each PDF to the output file.

In terms of implementation, your code will need to do the following:

1. Call os.listdir() to find all the files in the working directory and remove any non-PDF files.

2. Call Python’s sort() list method to alphabetize the filenames.

3. Create a PdfFileWriter object for the output PDF.

4. Loop over each PDF file, creating a PdfFileReader object for it.

5. Loop over each page (except the first) in each PDF file.

ADUP/18CS55 Module5

Dept. of CSE, BRCE

6. Add the pages to the output PDF.

7. Write the output PDF to a file named allminutes.pdf.

For this project, open a new file editor tab and save it as combinePdfs.py.

Step 1: Find All PDF Files

First, your program needs to get a list of all files with the .pdf extension in the current

working directory and sort them. Make your code look like the following:

#! python3

combinePdfs.py - Combines all the PDFs in the current working directory into

into a single PDF.

➊ import PyPDF2, os

Get all the PDF filenames.

pdfFiles = []

for filename in os.listdir('.'):

if filename.endswith('.pdf'):

➋ pdfFiles.append(filename)

➌ pdfFiles.sort(key = str.lower)

➍ pdfWriter = PyPDF2.PdfFileWriter()

TODO: Loop through all the PDF files.

TODO: Loop through all the pages (except the first) and add them.

TODO: Save the resulting PDF to a file.

After the shebang line and the descriptive comment about what the program does, this

code imports the os and PyPDF2 modules ➊. The os.listdir('.') call will return a list of every

file in the current working directory. The code loops over this list and adds only those files

with the .pdf extension to pdfFiles ➋. Afterward, this list is sorted in alphabetical order with

the key = str.lower keyword argument to sort() ➌.

A PdfFileWriter object is created to hold the combined PDF pages ➍. Finally, a few

comments outline the rest of the program.

Step 2: Open Each PDF

Now the program must read each PDF file in pdfFiles. Add the following to your program:

#! python3

combinePdfs.py - Combines all the PDFs in the current working directory into

ADUP/18CS55 Module5

Dept. of CSE, BRCE

a single PDF.

import PyPDF2, os

Get all the PDF filenames.

pdfFiles = []

--snip--

Loop through all the PDF files.

for filename in pdfFiles:

pdfFileObj = open(filename, 'rb')

pdfReader = PyPDF2.PdfFileReader(pdfFileObj)

TODO: Loop through all the pages (except the first) and add them.

TODO: Save the resulting PDF to a file.

For each PDF, the loop opens a filename in read-binary mode by

calling open() with 'rb' as the second argument. The open() call returns a File object, which

gets passed to PyPDF2.PdfFileReader() to create a PdfFileReader object for that PDF file.

Step 3: Add Each Page

For each PDF, you’ll want to loop over every page except the first. Add this code to your

program:

#! python3

combinePdfs.py - Combines all the PDFs in the current working directory into

a single PDF.

import PyPDF2, os

--snip--

Loop through all the PDF files.

for filename in pdfFiles:

--snip--

Loop through all the pages (except the first) and add them.

➊ for pageNum in range(1, pdfReader.numPages):

pageObj = pdfReader.getPage(pageNum)

pdfWriter.addPage(pageObj)

TODO: Save the resulting PDF to a file.

ADUP/18CS55 Module5

Dept. of CSE, BRCE

The code inside the for loop copies each Page object individually to

the PdfFileWriter object. Remember, you want to skip the first page. Since PyPDF2

considers 0 to be the first page, your loop should start at 1 ➊ and then go up to, but not

include, the integer in pdfReader.numPages.

Step 4: Save the Results

After these nested for loops are done looping, the pdfWriter variable will contain

a PdfFileWriter object with the pages for all the PDFs combined. The last step is to write this

content to a file on the hard drive. Add this code to your program:

#! python3

combinePdfs.py - Combines all the PDFs in the current working directory into

a single PDF.

import PyPDF2, os

--snip--

Loop through all the PDF files.

for filename in pdfFiles:

--snip--

Loop through all the pages (except the first) and add them.

for pageNum in range(1, pdfReader.numPages):

--snip--

Save the resulting PDF to a file.

pdfOutput = open('allminutes.pdf', 'wb')

pdfWriter.write(pdfOutput)

pdfOutput.close()

Passing 'wb' to open() opens the output PDF file, allminutes.pdf, in write-binary mode.

Then, passing the resulting File object to the write() method creates the actual PDF file. A

call to the close() method finishes the program.

Ideas for Similar Programs

Being able to create PDFs from the pages of other PDFs will let you make programs that can

do the following:

 Cut out specific pages from PDFs.

 Reorder pages in a PDF.

 Create a PDF from only those pages that have some specific text, identified by extractText().

WORD DOCUMENTS

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Python can create and modify Word documents, which have the .docx file extension, with

the docx module. You can install the module by running pip install --user -U python-

docx==0.8.10. (Appendix A has full details on installing third-party modules.)

NOTE

When using pip to first install Python-Docx, be sure to install python-docx, not docx. The

package name docx is for a different module that this book does not cover. However, when

you are going to import the module from the python-docx package, you’ll need to

run import docx, not import python-docx.

If you don’t have Word, LibreOffice Writer and OpenOffice Writer are free alternative

applications for Windows, macOS, and Linux that can be used to open .docx files. You can

download them from https://www.libreoffice.org/ and https://openoffice.org/, respectively.

The full documentation for Python-Docx is available at https://python-docx.readthedocs.io/.

Although there is a version of Word for macOS, this chapter will focus on Word for

Windows.

Compared to plaintext, .docx files have a lot of structure. This structure is represented by

three different data types in Python-Docx. At the highest level, a Document object represents

the entire document. The Document object contains a list of Paragraph objects for the

paragraphs in the document. (A new paragraph begins whenever the user

presses ENTER or RETURN while typing in a Word document.) Each of

these Paragraph objects contains a list of one or more Run objects. The single-sentence

paragraph in Figure 15-4 has four runs.

Figure 15-4: The Run objects identified in a Paragraph object

The text in a Word document is more than just a string. It has font, size, color, and other

styling information associated with it. A style in Word is a collection of these attributes.

A Run object is a contiguous run of text with the same style. A new Run object is needed

whenever the text style changes.

Reading Word Documents

Let’s experiment with the docx module.

Download demo.docx from https://nostarch.com/automatestuff2/ and save the document to

the working directory. Then enter the following into the interactive shell:

>>> import docx

➊ >>> doc = docx.Document('demo.docx')

➋ >>> len(doc.paragraphs)

7

➌ >>> doc.paragraphs[0].text

https://automatetheboringstuff.com/2e/chapter15/#calibre_link-2
https://www.libreoffice.org/
https://openoffice.org/
https://python-docx.readthedocs.io/
https://automatetheboringstuff.com/2e/chapter15/#calibre_link-7
https://nostarch.com/automatestuff2/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

'Document Title'

➍ >>> doc.paragraphs[1].text

'A plain paragraph with some bold and some italic'

➎ >>> len(doc.paragraphs[1].runs)

4

➏ >>> doc.paragraphs[1].runs[0].text

'A plain paragraph with some '

➐ >>> doc.paragraphs[1].runs[1].text

'bold'

➑ >>> doc.paragraphs[1].runs[2].text

' and some '

➒ >>> doc.paragraphs[1].runs[3].text

'italic'

At ➊, we open a .docx file in Python, call docx.Document(), and pass the

filename demo.docx. This will return a Document object, which has a paragraphs attribute

that is a list of Paragraph objects. When we call len() on doc.paragraphs, it returns 7, which

tells us that there are seven Paragraph objects in this document ➋. Each of

these Paragraph objects has a text attribute that contains a string of the text in that paragraph

(without the style information). Here, the first text attribute contains 'DocumentTitle' ➌, and

the second contains 'A plain paragraph with some bold and some italic' ➍.

Each Paragraph object also has a runs attribute that is a list of Run objects. Run objects

also have a text attribute, containing just the text in that particular run. Let’s look at

the text attributes in the second Paragraph object, 'A plain paragraph with some bold and

some italic'. Calling len() on this Paragraph object tells us that there are four Run objects ➎.

The first run object contains 'A plain paragraph with some ' ➏. Then, the text changes to a

bold style, so 'bold' starts a new Run object ➐. The text returns to an unbolded style after

that, which results in a third Run object, ' and some ' ➑. Finally, the fourth and

last Run object contains 'italic' in an italic style ➒.

With Python-Docx, your Python programs will now be able to read the text from

a .docx file and use it just like any other string value.

Getting the Full Text from a .docx File

If you care only about the text, not the styling information, in the Word document, you can

use the getText() function. It accepts a filename of a .docx file and returns a single string

value of its text. Open a new file editor tab and enter the following code, saving it

as readDocx.py:

#! python3

import docx

ADUP/18CS55 Module5

Dept. of CSE, BRCE

def getText(filename):

doc = docx.Document(filename)

fullText = []

for para in doc.paragraphs:

fullText.append(para.text)

return '\n'.join(fullText)

The getText() function opens the Word document, loops over all the Paragraph objects in

the paragraphs list, and then appends their text to the list in fullText. After the loop, the

strings in fullText are joined together with newline characters.

The readDocx.py program can be imported like any other module. Now if you just need

the text from a Word document, you can enter the following:

>>> import readDocx

>>> print(readDocx.getText('demo.docx'))

Document Title

A plain paragraph with some bold and some italic

Heading, level 1

Intense quote

first item in unordered list

first item in ordered list

You can also adjust getText() to modify the string before returning it. For example, to

indent each paragraph, replace the append() call in readDocx.py with this:

fullText.append(' ' + para.text)

To add a double space between paragraphs, change the join() call code to this:

return '\n\n'.join(fullText)

As you can see, it takes only a few lines of code to write functions that will read

a .docx file and return a string of its content to your liking.

Styling Paragraph and Run Objects

In Word for Windows, you can see the styles by pressing CTRL-ALT-SHIFT-S to display the

Styles pane, which looks like Figure 15-5. On macOS, you can view the Styles pane by

clicking the View ▸ Styles menu item.

https://automatetheboringstuff.com/2e/chapter15/#calibre_link-8

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Figure 15-5: Display the Styles pane by pressing CTRL-ALT-SHIFT-S on Windows.

Word and other word processors use styles to keep the visual presentation of similar types

of text consistent and easy to change. For example, perhaps you want to set body paragraphs

in 11-point, Times New Roman, left-justified, ragged-right text. You can create a style with

these settings and assign it to all body paragraphs. Then, if you later want to change the

presentation of all body paragraphs in the document, you can just change the style, and all

those paragraphs will be automatically updated.

For Word documents, there are three types of styles: paragraph styles can be applied

to Paragraph objects, character styles can be applied to Run objects, and linked styles can be

applied to both kinds of objects. You can give both Paragraph and Run objects styles by

setting their style attribute to a string. This string should be the name of a style. If style is set

to None, then there will be no style associated with the Paragraph or Run object.

The string values for the default Word styles are as follows:

'Normal'

'Body Text'

'Body Text 2'

'Body Text 3'

'Caption'

'Heading 1'

'Heading 2'

'Heading 5'

'Heading 6'

'Heading 7'

'Heading 8'

'Heading 9'

'Intense Quote'

'List'

'List Bullet'

'List Bullet 2'

'List Bullet 3'

'List Continue'

'List Continue 2'

'List Continue 3'

'List Number '

'List Paragraph'

'MacroText'

'No Spacing'

'Quote'

'Subtitle'

'TOC Heading'

'Title'

ADUP/18CS55 Module5

Dept. of CSE, BRCE

'Heading 3'

'Heading 4'

'List 2'

'List 3'

'List Number 2'

'List Number 3'

When using a linked style for a Run object, you will need to add ' Char' to the end of its

name. For example, to set the Quote linked style for a Paragraph object, you would

use paragraphObj.style = 'Quote', but for a Run object, you would use runObj.style = 'Quote

Char'.

In the current version of Python-Docx (0.8.10), the only styles that can be used are the

default Word styles and the styles in the opened .docx. New styles cannot be created—though

this may change in future versions of Python-Docx.

Creating Word Documents with Nondefault Styles

If you want to create Word documents that use styles beyond the default ones, you will need

to open Word to a blank Word document and create the styles yourself by clicking the New

Style button at the bottom of the Styles pane (Figure 15-6 shows this on Windows).

This will open the Create New Style from Formatting dialog, where you can enter the new

style. Then, go back into the interactive shell and open this blank Word document

with docx.Document(), using it as the base for your Word document. The name you gave this

style will now be available to use with Python-Docx.

Figure 15-6: The New Style button (left) and the Create New Style from Formatting dialog

(right)

Run Attributes

Runs can be further styled using text attributes. Each attribute can be set to one of three

values: True (the attribute is always enabled, no matter what other styles are applied to the

https://automatetheboringstuff.com/2e/chapter15/#calibre_link-9

ADUP/18CS55 Module5

Dept. of CSE, BRCE

run), False (the attribute is always disabled), or None (defaults to whatever the run’s style is

set to).

Table 15-1 lists the text attributes that can be set on Run objects.

Table 15-1: Run Object text Attributes

Attribute Description

bold The text appears in bold.

italic The text appears in italic.

underline The text is underlined.

strike The text appears with strikethrough.

double_strike The text appears with double strikethrough.

all_caps The text appears in capital letters.

small_caps The text appears in capital letters, with lowercase letters two points smaller.

shadow The text appears with a shadow.

outline The text appears outlined rather than solid.

rtl The text is written right-to-left.

imprint The text appears pressed into the page.

emboss The text appears raised off the page in relief.

For example, to change the styles of demo.docx, enter the following into the interactive

shell:

>>> import docx

>>> doc = docx.Document('demo.docx')

>>> doc.paragraphs[0].text

'Document Title'

>>> doc.paragraphs[0].style # The exact id may be different:

_ParagraphStyle('Title') id: 3095631007984

>>> doc.paragraphs[0].style = 'Normal'

>>> doc.paragraphs[1].text

'A plain paragraph with some bold and some italic'

>>> (doc.paragraphs[1].runs[0].text, doc.paragraphs[1].runs[1].text, doc.

paragraphs[1].runs[2].text, doc.paragraphs[1].runs[3].text)

('A plain paragraph with some ', 'bold', ' and some ', 'italic')

>>> doc.paragraphs[1].runs[0].style = 'QuoteChar'

>>> doc.paragraphs[1].runs[1].underline = True

>>> doc.paragraphs[1].runs[3].underline = True

>>> doc.save('restyled.docx')

https://automatetheboringstuff.com/2e/chapter15/#calibre_link-10

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Here, we use the text and style attributes to easily see what’s in the paragraphs in our

document. We can see that it’s simple to divide a paragraph into runs and access each run

individually. So we get the first, second, and fourth runs in the second paragraph; style each

run; and save the results to a new document.

The words Document Title at the top of restyled.docx will have the Normal style instead

of the Title style, the Run object for the text A plain paragraph with some will have the

QuoteChar style, and the two Run objects for the words bold and italic will have

their underline attributes set to True. Figure 15-7 shows how the styles of paragraphs and

runs look in restyled.docx.

Figure 15-7: The restyled.docx file

You can find more complete documentation on Python-Docx’s use of styles

at https://python-docx.readthedocs.io/en/latest/user/styles.html.

Writing Word Documents

Enter the following into the interactive shell:

>>> import docx

>>> doc = docx.Document()

>>> doc.add_paragraph('Hello, world!')

<docx.text.Paragraph object at 0x0000000003B56F60>

>>> doc.save('helloworld.docx')

To create your own .docx file, call docx.Document() to return a new, blank

Word Document object. The add_paragraph() document method adds a new paragraph of text

to the document and returns a reference to the Paragraph object that was added. When you’re

done adding text, pass a filename string to the save() document method to save

the Document object to a file.

This will create a file named helloworld.docx in the current working directory that, when

opened, looks like Figure 15-8.

https://automatetheboringstuff.com/2e/chapter15/#calibre_link-11
https://automatetheboringstuff.com/2e/chapter15/#calibre_link-12

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Figure 15-8: The Word document created using add_paragraph('Hello, world!')

You can add paragraphs by calling the add_paragraph() method again with the new

paragraph’s text. Or to add text to the end of an existing paragraph, you can call the

paragraph’s add_run() method and pass it a string. Enter the following into the interactive

shell:

>>> import docx

>>> doc = docx.Document()

>>> doc.add_paragraph('Hello world!')

<docx.text.Paragraph object at 0x000000000366AD30>

>>> paraObj1 = doc.add_paragraph('This is a second paragraph.')

>>> paraObj2 = doc.add_paragraph('This is a yet another paragraph.')

>>> paraObj1.add_run(' This text is being added to the second paragraph.')

<docx.text.Run object at 0x0000000003A2C860>

>>> doc.save('multipleParagraphs.docx')

The resulting document will look like Figure 15-9. Note that the text This text is being

added to the second paragraph. was added to the Paragraph object in paraObj1, which was

the second paragraph added to doc. The add_paragraph() and add_run() functions return

paragraph and Run objects, respectively, to save you the trouble of extracting them as a

separate step.

https://automatetheboringstuff.com/2e/chapter15/#calibre_link-13

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Keep in mind that as of Python-Docx version 0.8.10, new Paragraph objects can be added

only to the end of the document, and new Run objects can be added only to the end of

a Paragraph object.

The save() method can be called again to save the additional changes you’ve made.

Figure 15-9: The document with multiple Paragraph and Run objects added

Both add_paragraph() and add_run() accept an optional second argument that is a string of

the Paragraph or Run object’s style. Here’s an example:

>>> doc.add_paragraph('Hello, world!', 'Title')

This line adds a paragraph with the text Hello, world! in the Title style.

Adding Headings

Calling add_heading() adds a paragraph with one of the heading styles. Enter the following

into the interactive shell:

>>> doc = docx.Document()

>>> doc.add_heading('Header 0', 0)

<docx.text.Paragraph object at 0x00000000036CB3C8>

>>> doc.add_heading('Header 1', 1)

<docx.text.Paragraph object at 0x00000000036CB630>

>>> doc.add_heading('Header 2', 2)

<docx.text.Paragraph object at 0x00000000036CB828>

ADUP/18CS55 Module5

Dept. of CSE, BRCE

>>> doc.add_heading('Header 3', 3)

<docx.text.Paragraph object at 0x00000000036CB2E8>

>>> doc.add_heading('Header 4', 4)

<docx.text.Paragraph object at 0x00000000036CB3C8>

>>> doc.save('headings.docx')

The arguments to add_heading() are a string of the heading text and an integer

from 0 to 4. The integer 0 makes the heading the Title style, which is used for the top of the

document. Integers 1 to 4 are for various heading levels, with 1 being the main heading

and 4 the lowest subheading. The add_heading() function returns a Paragraph object to save

you the step of extracting it from the Document object as a separate step.

The resulting headings.docx file will look like Figure 15-10.

Figure 15-10: The headings.docx document with headings 0 to 4

Adding Line and Page Breaks

To add a line break (rather than starting a whole new paragraph), you can call

the add_break() method on the Run object you want to have the break appear after. If you

want to add a page break instead, you need to pass the

value docx.enum.text.WD_BREAK.PAGE as a lone argument to add_break(), as is done in

the middle of the following example:

>>> doc = docx.Document()

>>> doc.add_paragraph('This is on the first page!')

<docx.text.Paragraph object at 0x0000000003785518>

➊ >>> doc.paragraphs[0].runs[0].add_break(docx.enum.text.WD_BREAK.PAGE)

>>> doc.add_paragraph('This is on the second page!')

<docx.text.Paragraph object at 0x00000000037855F8>

>>> doc.save('twoPage.docx')

This creates a two-page Word document with This is on the first page! on the first page

and This is on the second page! on the second. Even though there was still plenty of space on

https://automatetheboringstuff.com/2e/chapter15/#calibre_link-14

ADUP/18CS55 Module5

Dept. of CSE, BRCE

the first page after the text This is on the first page!, we forced the next paragraph to begin on

a new page by inserting a page break after the first run of the first paragraph ➊.

Adding Pictures

Document objects have an add_picture() method that will let you add an image to the end of

the document. Say you have a file zophie.png in the current working directory. You can

add zophie.png to the end of your document with a width of 1 inch and height of 4

centimeters (Word can use both imperial and metric units) by entering the following:

>>> doc.add_picture('zophie.png', width=docx.shared.Inches(1),

height=docx.shared.Cm(4))

<docx.shape.InlineShape object at 0x00000000036C7D30>

The first argument is a string of the image’s filename. The

optional width and height keyword arguments will set the width and height of the image in

the document. If left out, the width and height will default to the normal size of the image.

You’ll probably prefer to specify an image’s height and width in familiar units such as

inches and centimeters, so you can use

the docx.shared.Inches() and docx.shared.Cm() functions when you’re specifying

the width and height keyword arguments.

CREATING PDFS FROM WORD DOCUMENTS

The PyPDF2 module doesn’t allow you to create PDF documents directly, but there’s a way

to generate PDF files with Python if you’re on Windows and have Microsoft Word installed.

You’ll need to install the Pywin32 package by running pip install --user -U pywin32==224.

With this and the docx module, you can create Word documents and then convert them to

PDFs with the following script.

Open a new file editor tab, enter the following code, and save it

as convertWordToPDF.py:

This script runs on Windows only, and you must have Word installed.

import win32com.client # install with "pip install pywin32==224"

import docx

wordFilename = 'your_word_document.docx'

pdfFilename = 'your_pdf_filename.pdf'

doc = docx.Document()

Code to create Word document goes here.

doc.save(wordFilename)

wdFormatPDF = 17 # Word's numeric code for PDFs.

wordObj = win32com.client.Dispatch('Word.Application')

ADUP/18CS55 Module5

Dept. of CSE, BRCE

docObj = wordObj.Documents.Open(wordFilename)

docObj.SaveAs(pdfFilename, FileFormat=wdFormatPDF)

docObj.Close()

wordObj.Quit()

To write a program that produces PDFs with your own content, you must use

the docx module to create a Word document, then use the Pywin32

package’s win32com.client module to convert it to a PDF. Replace the # Code to create Word

document goes here. comment with docx function calls to create your own content for the

PDF in a Word document.

This may seem like a convoluted way to produce PDFs, but as it turns out, professional

software solutions are often just as complicated.

SUMMARY

Text information isn’t just for plaintext files; in fact, it’s pretty likely that you deal with PDFs

and Word documents much more often. You can use the PyPDF2 module to read and write

PDF documents. Unfortunately, reading text from PDF documents might not always result in

a perfect translation to a string because of the complicated PDF file format, and some PDFs

might not be readable at all. In these cases, you’re out of luck unless future updates to

PyPDF2 support additional PDF features.

Word documents are more reliable, and you can read them with the python-

docx package’s docx module. You can manipulate text in Word documents

via Paragraph and Run objects. These objects can also be given styles, though they must be

from the default set of styles or styles already in the document. You can add new paragraphs,

headings, breaks, and pictures to the document, though only to the end.

Many of the limitations that come with working with PDFs and Word documents are

because these formats are meant to be nicely displayed for human readers, rather than easy to

parse by software. The next chapter takes a look at two other common formats for storing

information: JSON and CSV files. These formats are designed to be used by computers, and

you’ll see that Python can work with these formats much more easily.

PRACTICE QUESTIONS

1. A string value of the PDF filename is not passed to the PyPDF2.PdfFileReader() function.

What do you pass to the function instead?

2. What modes do the File objects for PdfFileReader() and PdfFileWriter() need to be

opened in?

3. How do you acquire a Page object for page 5 from a PdfFileReader object?

4. What PdfFileReader variable stores the number of pages in the PDF document?

5. If a PdfFileReader object’s PDF is encrypted with the password swordfish, what must you

do before you can obtain Page objects from it?

https://automatetheboringstuff.com/2e/chapter15/#calibre_link-18

ADUP/18CS55 Module5

Dept. of CSE, BRCE

6. What methods do you use to rotate a page?

7. What method returns a Document object for a file named demo.docx?

8. What is the difference between a Paragraph object and a Run object?

9. How do you obtain a list of Paragraph objects for a Document object that’s stored in a

variable named doc?

10. What type of object has bold, underline, italic, strike, and outline variables?

11. What is the difference between setting the bold variable to True, False, or None?

12. How do you create a Document object for a new Word document?

13. How do you add a paragraph with the text 'Hello, there!' to a Document object stored in a

variable named doc?

14. What integers represent the levels of headings available in Word documents?

PRACTICE PROJECTS

For practice, write programs that do the following.

PDF Paranoia

Using the os.walk() function from Chapter 10, write a script that will go through every PDF

in a folder (and its subfolders) and encrypt the PDFs using a password provided on the

command line. Save each encrypted PDF with an _encrypted.pdf suffix added to the original

filename. Before deleting the original file, have the program attempt to read and decrypt the

file to ensure that it was encrypted correctly.

Then, write a program that finds all encrypted PDFs in a folder (and its subfolders) and

creates a decrypted copy of the PDF using a provided password. If the password is incorrect,

the program should print a message to the user and continue to the next PDF.

Custom Invitations as Word Documents

Say you have a text file of guest names. This guests.txt file has one name per line, as follows:

Prof. Plum

Miss Scarlet

Col. Mustard

Al Sweigart

RoboCop

Write a program that would generate a Word document with custom invitations that look

like Figure 15-11.

Since Python-Docx can use only those styles that already exist in the Word document, you

will have to first add these styles to a blank Word file and then open that file with Python-

Docx. There should be one invitation per page in the resulting Word document, so

https://automatetheboringstuff.com/2e/chapter15/#calibre_link-30
https://automatetheboringstuff.com/2e/chapter15/#calibre_link-31

ADUP/18CS55 Module5

Dept. of CSE, BRCE

call add_break() to add a page break after the last paragraph of each invitation. This way, you

will need to open only one Word document to print all of the invitations at once.

Figure 15-11: The Word document generated by your custom invite script

You can download a sample guests.txt file from https://nostarch.com/automatestuff2/.

Brute-Force PDF Password Breaker

Say you have an encrypted PDF that you have forgotten the password to, but you remember it

was a single English word. Trying to guess your forgotten password is quite a boring task.

Instead you can write a program that will decrypt the PDF by trying every possible English

word until it finds one that works. This is called a brute-force password attack. Download the

text file dictionary.txt from https://nostarch.com/automatestuff2/. This dictionary

file contains over 44,000 English words with one word per line.

Using the file-reading skills you learned in Chapter 9, create a list of word strings by

reading this file. Then loop over each word in this list, passing it to the decrypt() method. If

this method returns the integer 0, the password was wrong and your program should continue

to the next password. If decrypt() returns 1, then your program should break out of the loop

and print the hacked password. You should try both the uppercase and lowercase form of

each word. (On my laptop, going through all 88,000 uppercase and lowercase words from the

dictionary file takes a couple of minutes. This is why you shouldn’t use a simple English

word for your passwords.)

https://nostarch.com/automatestuff2/
https://nostarch.com/automatestuff2/
https://automatetheboringstuff.com/2e/chapter15/#calibre_link-32

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Support the author by purchasing the print/ebook bundle from No Starch Press or separately

on Amazon.

Read the author's other Creative Commons licensed Python books.

Home | Buy on No Starch Press (comes with free ebook) | Buy on Amazon | @AlSweigart |

https://www.nostarch.com/automatestuff2
https://www.amazon.com/gp/product/1593279922/ref%3Das_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1593279922&linkCode=as2&tag=playwithpyth-20&linkId=ee4ebe796322bf7f7598b85afaefb44a
https://automatetheboringstuff.com/
https://www.nostarch.com/automatestuff2
https://www.amazon.com/gp/product/1593279922/ref%3Das_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1593279922&linkCode=as2&tag=playwithpyth-20&linkId=ee4ebe796322bf7f7598b85afaefb44a
https://twitter.com/AlSweigart

ADUP/18CS55 Module5

Dept. of CSE, BRCE

ADUP/18CS55 Module5

Dept. of CSE, BRCE

16

WORKING WITH CSV FILES AND JSON DATA

In Chapter 15, you learned how to extract text from PDF and Word documents. These files

were in a binary format, which required special Python modules to access their data. CSV

and JSON files, on the other hand, are just plaintext files. You can view them in a text editor,

such as Mu. But Python also comes with the special csv and json modules, each providing

functions to help you work with these file formats.

CSV stands for “comma-separated values,” and CSV files are simplified spreadsheets

stored as plaintext files. Python’s csv module makes it easy to parse CSV files.

JSON (pronounced “JAY-sawn” or “Jason”—it doesn’t matter how because either way

people will say you’re pronouncing it wrong) is a format that stores information as JavaScript

source code in plaintext files. (JSON is short for JavaScript Object Notation.) You don’t need

to know the JavaScript programming language to use JSON files, but the JSON format is

useful to know because it’s used in many web applications.

THE CSV MODULE

Each line in a CSV file represents a row in the spreadsheet, and commas separate the cells in

the row. For example, the

spreadsheet example.xlsx from https://nostarch.com/automatestuff2/ would look like this in a

CSV file:

4/5/2015 13:34,Apples,73

4/5/2015 3:41,Cherries,85

4/6/2015 12:46,Pears,14

4/8/2015 8:59,Oranges,52

4/10/2015 2:07,Apples,152

4/10/2015 18:10,Bananas,23

4/10/2015 2:40,Strawberries,98

https://automatetheboringstuff.com/2e/chapter16/#calibre_link-477
https://nostarch.com/automatestuff2/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

I will use this file for this chapter’s interactive shell examples. You can

download example.csv from https://nostarch.com/automatestuff2/ or enter the text into a text

editor and save it as example.csv.

CSV files are simple, lacking many of the features of an Excel spreadsheet. For example,

CSV files:

 Don’t have types for their values—everything is a string

 Don’t have settings for font size or color

 Don’t have multiple worksheets

 Can’t specify cell widths and heights

 Can’t have merged cells

 Can’t have images or charts embedded in them

The advantage of CSV files is simplicity. CSV files are widely supported by many types

of programs, can be viewed in text editors (including Mu), and are a straightforward way to

represent spreadsheet data. The CSV format is exactly as advertised: it’s just a text file of

comma-separated values.

Since CSV files are just text files, you might be tempted to read them in as a string and

then process that string using the techniques you learned in Chapter 9. For example, since

each cell in a CSV file is separated by a comma, maybe you could just call split(',') on each

line of text to get the comma-separated values as a list of strings. But not every comma in a

CSV file represents the boundary between two cells. CSV files also have their own set of

escape characters to allow commas and other characters to be included as part of the values.

The split() method doesn’t handle these escape characters. Because of these potential pitfalls,

you should always use the csv module for reading and writing CSV files.

reader Objects

To read data from a CSV file with the csv module, you need to create a reader object.

A reader object lets you iterate over lines in the CSV file. Enter the following into the

interactive shell, with example.csv in the current working directory:

➊ >>> import csv

➋ >>> exampleFile = open('example.csv')

➌ >>> exampleReader = csv.reader(exampleFile)

➍ >>> exampleData = list(exampleReader)

➎ >>> exampleData

[['4/5/2015 13:34', 'Apples', '73'], ['4/5/2015 3:41', 'Cherries', '85'],

['4/6/2015 12:46', 'Pears', '14'], ['4/8/2015 8:59', 'Oranges', '52'],

['4/10/2015 2:07', 'Apples', '152'], ['4/10/2015 18:10', 'Bananas', '23'],

['4/10/2015 2:40', 'Strawberries', '98']]

The csv module comes with Python, so we can import it ➊ without having to install it

first.

https://nostarch.com/automatestuff2/
https://automatetheboringstuff.com/2e/chapter16/#calibre_link-32

ADUP/18CS55 Module5

Dept. of CSE, BRCE

To read a CSV file with the csv module, first open it using the open() function ➋, just as

you would any other text file. But instead of calling the read() or readlines() method on

the File object that open() returns, pass it to the csv.reader() function ➌. This will return

a reader object for you to use. Note that you don’t pass a filename string directly to

the csv.reader() function.

The most direct way to access the values in the reader object is to convert it to a plain

Python list by passing it to list() ➍. Using list() on this reader object returns a list of lists,

which you can store in a variable like exampleData. Entering exampleData in the shell

displays the list of lists ➎.

Now that you have the CSV file as a list of lists, you can access the value at a particular

row and column with the expression exampleData[row][col], where row is the index of one

of the lists in exampleData, and col is the index of the item you want from that list. Enter the

following into the interactive shell:

>>> exampleData[0][0]

'4/5/2015 13:34'

>>> exampleData[0][1]

'Apples'

>>> exampleData[0][2]

'73'

>>> exampleData[1][1]

'Cherries'

>>> exampleData[6][1]

'Strawberries'

As you can see from the output, exampleData[0][0] goes into the first list and gives us the

first string, exampleData[0][2] goes into the first list and gives us the third string, and so on.

Reading Data from reader Objects in a for Loop

For large CSV files, you’ll want to use the reader object in a for loop. This avoids loading the

entire file into memory at once. For example, enter the following into the interactive shell:

>>> import csv

>>> exampleFile = open('example.csv')

>>> exampleReader = csv.reader(exampleFile)

>>> for row in exampleReader:

print('Row #' + str(exampleReader.line_num) + ' ' + str(row))

Row #1 ['4/5/2015 13:34', 'Apples', '73']

Row #2 ['4/5/2015 3:41', 'Cherries', '85']

Row #3 ['4/6/2015 12:46', 'Pears', '14']

Row #4 ['4/8/2015 8:59', 'Oranges', '52']

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Row #5 ['4/10/2015 2:07', 'Apples', '152']

Row #6 ['4/10/2015 18:10', 'Bananas', '23']

Row #7 ['4/10/2015 2:40', 'Strawberries', '98']

After you import the csv module and make a reader object from the CSV file, you can

loop through the rows in the reader object. Each row is a list of values, with each value

representing a cell.

The print() function call prints the number of the current row and the contents of the row.

To get the row number, use the reader object’s line_num variable, which contains the number

of the current line.

The reader object can be looped over only once. To reread the CSV file, you must

call csv.reader to create a reader object.

writer Objects

A writer object lets you write data to a CSV file. To create a writer object, you use

the csv.writer() function. Enter the following into the interactive shell:

>>> import csv

➊ >>> outputFile = open('output.csv', 'w', newline='')

➋ >>> outputWriter = csv.writer(outputFile)

>>> outputWriter.writerow(['spam', 'eggs', 'bacon', 'ham'])

21

>>> outputWriter.writerow(['Hello, world!', 'eggs', 'bacon', 'ham'])

32

>>> outputWriter.writerow([1, 2, 3.141592, 4])

16

>>> outputFile.close()

First, call open() and pass it 'w' to open a file in write mode ➊. This will create the object

you can then pass to csv.writer() ➋ to create a writer object.

On Windows, you’ll also need to pass a blank string for

the open() function’s newline keyword argument. For technical reasons beyond the scope of

this book, if you forget to set the newline argument, the rows in output.csv will be double-

spaced, as shown in Figure 16-1.

https://automatetheboringstuff.com/2e/chapter16/#calibre_link-1566

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Figure 16-1: If you forget the newline='' keyword argument in open(), the CSV file will be

double-spaced.

The writerow() method for writer objects takes a list argument. Each value in the list is

placed in its own cell in the output CSV file. The return value of writerow() is the number of

characters written to the file for that row (including newline characters).

This code produces an output.csv file that looks like this:

spam,eggs,bacon,ham

"Hello, world!",eggs,bacon,ham

1,2,3.141592,4

Notice how the writer object automatically escapes the comma in the value 'Hello,

world!' with double quotes in the CSV file. The csv module saves you from having to handle

these special cases yourself.

The delimiter and lineterminator Keyword Arguments

Say you want to separate cells with a tab character instead of a comma and you want the rows

to be double-spaced. You could enter something like the following into the interactive shell:

>>> import csv

>>> csvFile = open('example.tsv', 'w', newline='')

➊ >>> csvWriter = csv.writer(csvFile, delimiter='\t', lineterminator='\n\n')

>>> csvWriter.writerow(['apples', 'oranges', 'grapes'])

24

>>> csvWriter.writerow(['eggs', 'bacon', 'ham'])

17

>>> csvWriter.writerow(['spam', 'spam', 'spam', 'spam', 'spam', 'spam'])

ADUP/18CS55 Module5

Dept. of CSE, BRCE

32

>>> csvFile.close()

This changes the delimiter and line terminator characters in your file. The delimiter is the

character that appears between cells on a row. By default, the delimiter for a CSV file is a

comma. The line terminator is the character that comes at the end of a row. By default, the

line terminator is a newline. You can change characters to different values by using

the delimiter and lineterminator keyword arguments with csv.writer().

Passing delimiter='\t' and lineterminator='\n\n' ➊ changes the character between cells to a

tab and the character between rows to two newlines. We then call writerow() three times to

give us three rows.

This produces a file named example.tsv with the following contents:

apples oranges grapes

eggs bacon ham

spam spam spam spam spam spam

Now that our cells are separated by tabs, we’re using the file extension .tsv, for tab-

separated values.

DictReader and DictWriter CSV Objects

For CSV files that contain header rows, it’s often more convenient to work with

the DictReader and DictWriter objects, rather than the reader and writer objects.

The reader and writer objects read and write to CSV file rows by using lists.

The DictReader and DictWriter CSV objects perform the same functions but use dictionaries

instead, and they use the first row of the CSV file as the keys of these dictionaries.

Go to https://nostarch.com/automatestuff2/ and download

the exampleWithHeader.csv file. This file is the same as example.csv except it has

Timestamp, Fruit, and Quantity as the column headers in the first row.

To read the file, enter the following into the interactive shell:

>>> import csv

>>> exampleFile = open('exampleWithHeader.csv')

>>> exampleDictReader = csv.DictReader(exampleFile)

>>> for row in exampleDictReader:

... print(row['Timestamp'], row['Fruit'], row['Quantity'])

...

4/5/2015 13:34 Apples 73

4/5/2015 3:41 Cherries 85

4/6/2015 12:46 Pears 14

https://nostarch.com/automatestuff2/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

4/8/2015 8:59 Oranges 52

4/10/2015 2:07 Apples 152

4/10/2015 18:10 Bananas 23

4/10/2015 2:40 Strawberries 98

Inside the loop, DictReader object sets row to a dictionary object with keys derived from

the headers in the first row. (Well, technically, it sets row to an OrderedDict object, which

you can use in the same way as a dictionary; the difference between them is beyond the scope

of this book.) Using a DictReader object means you don’t need additional code to skip the

first row’s header information, since the DictReader object does this for you.

If you tried to use DictReader objects with example.csv, which doesn’t have column

headers in the first row, the DictReader object would use '4/5/2015 13:34', 'Apples',

and '73' as the dictionary keys. To avoid this, you can supply the DictReader() function with a

second argument containing made-up header names:

>>> import csv

>>> exampleFile = open('example.csv')

>>> exampleDictReader = csv.DictReader(exampleFile, ['time', 'name',

'amount'])

>>> for row in exampleDictReader:

... print(row['time'], row['name'], row['amount'])

...

4/5/2015 13:34 Apples 73

4/5/2015 3:41 Cherries 85

4/6/2015 12:46 Pears 14

4/8/2015 8:59 Oranges 52

4/10/2015 2:07 Apples 152

4/10/2015 18:10 Bananas 23

4/10/2015 2:40 Strawberries 98

Because example.csv’s first row doesn’t have any text for the heading of each column, we

created our own: 'time', 'name', and 'amount'.

DictWriter objects use dictionaries to create CSV files.

>>> import csv

>>> outputFile = open('output.csv', 'w', newline='')

>>> outputDictWriter = csv.DictWriter(outputFile, ['Name', 'Pet', 'Phone'])

>>> outputDictWriter.writeheader()

>>> outputDictWriter.writerow({'Name': 'Alice', 'Pet': 'cat', 'Phone': '555-

1234'})

20

>>> outputDictWriter.writerow({'Name': 'Bob', 'Phone': '555-9999'})

ADUP/18CS55 Module5

Dept. of CSE, BRCE

15

>>> outputDictWriter.writerow({'Phone': '555-5555', 'Name': 'Carol', 'Pet':

'dog'})

20

>>> outputFile.close()

If you want your file to contain a header row, write that row by calling writeheader().

Otherwise, skip calling writeheader() to omit a header row from the file. You then write each

row of the CSV file with a writerow() method call, passing a dictionary that uses the headers

as keys and contains the data to write to the file.

The output.csv file this code creates looks like this:

Name,Pet,Phone

Alice,cat,555-1234

Bob,,555-9999

Carol,dog,555-5555

Notice that the order of the key-value pairs in the dictionaries you passed

to writerow() doesn’t matter: they’re written in the order of the keys given to DictWriter().

For example, even though you passed the Phone key and value before the Name and Pet keys

and values in the fourth row, the phone number still appeared last in the output.

Notice also that any missing keys, such as 'Pet' in {'Name': 'Bob', 'Phone': '555-9999'},

will simply be empty in the CSV file.

PROJECT: REMOVING THE HEADER FROM CSV FILES

Say you have the boring job of removing the first line from several hundred CSV files.

Maybe you’ll be feeding them into an automated process that requires just the data and not

the headers at the top of the columns. You could open each file in Excel, delete the first row,

and resave the file—but that would take hours. Let’s write a program to do it instead.

The program will need to open every file with the .csv extension in the current working

directory, read in the contents of the CSV file, and rewrite the contents without the first row

to a file of the same name. This will replace the old contents of the CSV file with the new,

headless contents.

WARNING

As always, whenever you write a program that modifies files, be sure to back up the files

first, just in case your program does not work the way you expect it to. You don’t want to

accidentally erase your original files.

At a high level, the program must do the following:

1. Find all the CSV files in the current working directory.

2. Read in the full contents of each file.

3. Write out the contents, skipping the first line, to a new CSV file.

ADUP/18CS55 Module5

Dept. of CSE, BRCE

At the code level, this means the program will need to do the following:

1. Loop over a list of files from os.listdir(), skipping the non-CSV files.

2. Create a CSV reader object and read in the contents of the file, using the line_num attribute

to figure out which line to skip.

3. Create a CSV writer object and write out the read-in data to the new file.

For this project, open a new file editor window and save it as removeCsvHeader.py.

Step 1: Loop Through Each CSV File

The first thing your program needs to do is loop over a list of all CSV filenames for the

current working directory. Make your removeCsvHeader.py look like this:

#! python3

removeCsvHeader.py - Removes the header from all CSV files in the current

working directory.

import csv, os

os.makedirs('headerRemoved', exist_ok=True)

Loop through every file in the current working directory.

for csvFilename in os.listdir('.'):

if not csvFilename.endswith('.csv'):

➊ continue # skip non-csv files

print('Removing header from ' + csvFilename + '...')

TODO: Read the CSV file in (skipping first row).

TODO: Write out the CSV file.

The os.makedirs() call will create a headerRemoved folder where all the headless CSV

files will be written. A for loop on os.listdir('.') gets you partway there, but it will loop

over all files in the working directory, so you’ll need to add some code at the start of the loop

that skips filenames that don’t end with .csv. The continue statement ➊ makes the for loop

move on to the next filename when it comes across a non-CSV file.

Just so there’s some output as the program runs, print out a message saying which CSV

file the program is working on. Then, add some TODO comments for what the rest of the

program should do.

Step 2: Read in the CSV File

ADUP/18CS55 Module5

Dept. of CSE, BRCE

The program doesn’t remove the first line from the CSV file. Rather, it creates a new copy of

the CSV file without the first line. Since the copy’s filename is the same as the original

filename, the copy will overwrite the original.

The program will need a way to track whether it is currently looping on the first row. Add

the following to removeCsvHeader.py.

#! python3

removeCsvHeader.py - Removes the header from all CSV files in the current

working directory.

--snip--

Read the CSV file in (skipping first row).

csvRows = []

csvFileObj = open(csvFilename)

readerObj = csv.reader(csvFileObj)

for row in readerObj:

if readerObj.line_num == 1:

continue # skip first row

csvRows.append(row)

csvFileObj.close()

TODO: Write out the CSV file.

The reader object’s line_num attribute can be used to determine which line in the CSV file

it is currently reading. Another for loop will loop over the rows returned from the

CSV reader object, and all rows but the first will be appended to csvRows.

As the for loop iterates over each row, the code checks whether readerObj.line_num is set

to 1. If so, it executes a continue to move on to the next row without appending it

to csvRows. For every row afterward, the condition will be always be False, and the row will

be appended to csvRows.

Step 3: Write Out the CSV File Without the First Row

Now that csvRows contains all rows but the first row, the list needs to be written out to a

CSV file in the headerRemoved folder. Add the following to removeCsvHeader.py:

#! python3

removeCsvHeader.py - Removes the header from all CSV files in the current

working directory.

--snip--

Loop through every file in the current working directory.

ADUP/18CS55 Module5

Dept. of CSE, BRCE

➊ for csvFilename in os.listdir('.'):

if not csvFilename.endswith('.csv'):

continue # skip non-CSV files

--snip--

Write out the CSV file.

csvFileObj = open(os.path.join('headerRemoved', csvFilename), 'w',

newline='')

csvWriter = csv.writer(csvFileObj)

for row in csvRows:

csvWriter.writerow(row)

csvFileObj.close()

The CSV writer object will write the list to a CSV file

in headerRemoved using csvFilename (which we also used in the CSV reader). This will

overwrite the original file.

Once we create the writer object, we loop over the sublists stored in csvRows and write

each sublist to the file.

After the code is executed, the outer for loop ➊ will loop to the next filename

from os.listdir('.'). When that loop is finished, the program will be complete.

To test your program,

download removeCsvHeader.zip from https://nostarch.com/automatestuff2/ and unzip it to a

folder. Run the removeCsvHeader.py program in that folder. The output will look like this:

Removing header from NAICS_data_1048.csv...

Removing header from NAICS_data_1218.csv...

--snip--

Removing header from NAICS_data_9834.csv...

Removing header from NAICS_data_9986.csv...

This program should print a filename each time it strips the first line from a CSV file.

Ideas for Similar Programs

The programs that you could write for CSV files are similar to the kinds you could write for

Excel files, since they’re both spreadsheet files. You could write programs to do the

following:

 Compare data between different rows in a CSV file or between multiple CSV files.

 Copy specific data from a CSV file to an Excel file, or vice versa.

 Check for invalid data or formatting mistakes in CSV files and alert the user to these errors.

 Read data from a CSV file as input for your Python programs.

https://nostarch.com/automatestuff2/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

JSON AND APIS

JavaScript Object Notation is a popular way to format data as a single human-readable string.

JSON is the native way that JavaScript programs write their data structures and usually

resembles what Python’s pprint() function would produce. You don’t need to know

JavaScript in order to work with JSON-formatted data.

Here’s an example of data formatted as JSON:

{"name": "Zophie", "isCat": true,

"miceCaught": 0, "napsTaken": 37.5,

"felineIQ": null}

JSON is useful to know, because many websites offer JSON content as a way for

programs to interact with the website. This is known as providing an application

programming interface (API). Accessing an API is the same as accessing any other web page

via a URL. The difference is that the data returned by an API is formatted (with JSON, for

example) for machines; APIs aren’t easy for people to read.

Many websites make their data available in JSON format. Facebook, Twitter, Yahoo,

Google, Tumblr, Wikipedia, Flickr, Data.gov, Reddit, IMDb, Rotten Tomatoes, LinkedIn,

and many other popular sites offer APIs for programs to use. Some of these sites require

registration, which is almost always free. You’ll have to find documentation for what URLs

your program needs to request in order to get the data you want, as well as the general format

of the JSON data structures that are returned. This documentation should be provided by

whatever site is offering the API; if they have a “Developers” page, look for the

documentation there.

Using APIs, you could write programs that do the following:

 Scrape raw data from websites. (Accessing APIs is often more convenient than downloading

web pages and parsing HTML with Beautiful Soup.)

 Automatically download new posts from one of your social network accounts and post them

to another account. For example, you could take your Tumblr posts and post them to

Facebook.

 Create a “movie encyclopedia” for your personal movie collection by pulling data from

IMDb, Rotten Tomatoes, and Wikipedia and putting it into a single text file on your

computer.

You can see some examples of JSON APIs in the resources

at https://nostarch.com/automatestuff2/.

JSON isn’t the only way to format data into a human-readable string. There are many

others, including XML (eXtensible Markup Language), TOML (Tom’s Obvious, Minimal

Language), YML (Yet another Markup Language), INI (Initialization), or even the outdated

ASN.1 (Abstract Syntax Notation One) formats, all of which provide a structure for

representing data as human-readable text. This book won’t cover these, because JSON has

quickly become the most widely used alternate format, but there are third-party Python

modules that readily handle them.

https://nostarch.com/automatestuff2/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

THE JSON MODULE

Python’s json module handles all the details of translating between a string with JSON data

and Python values for the json.loads() and json.dumps() functions. JSON can’t

store every kind of Python value. It can contain values of only the following data types:

strings, integers, floats, Booleans, lists, dictionaries, and NoneType. JSON cannot represent

Python-specific objects, such as File objects, CSV reader or writer objects, Regex objects, or

Selenium WebElement objects.

Reading JSON with the loads() Function

To translate a string containing JSON data into a Python value, pass it to

the json.loads() function. (The name means “load string,” not “loads.”) Enter the following

into the interactive shell:

>>> stringOfJsonData = '{"name": "Zophie", "isCat": true, "miceCaught": 0,

"felineIQ": null}'

>>> import json

>>> jsonDataAsPythonValue = json.loads(stringOfJsonData)

>>> jsonDataAsPythonValue

{'isCat': True, 'miceCaught': 0, 'name': 'Zophie', 'felineIQ': None}

After you import the json module, you can call loads() and pass it a string of JSON data.

Note that JSON strings always use double quotes. It will return that data as a Python

dictionary. Python dictionaries are not ordered, so the key-value pairs may appear in a

different order when you print jsonDataAsPythonValue.

Writing JSON with the dumps() Function

The json.dumps() function (which means “dump string,” not “dumps”) will translate a Python

value into a string of JSON-formatted data. Enter the following into the interactive shell:

>>> pythonValue = {'isCat': True, 'miceCaught': 0, 'name': 'Zophie',

'felineIQ': None}

>>> import json

>>> stringOfJsonData = json.dumps(pythonValue)

>>> stringOfJsonData

'{"isCat": true, "felineIQ": null, "miceCaught": 0, "name": "Zophie" }'

The value can only be one of the following basic Python data types: dictionary, list,

integer, float, string, Boolean, or None.

PROJECT: FETCHING CURRENT WEATHER DATA

Checking the weather seems fairly trivial: Open your web browser, click the address bar, type

the URL to a weather website (or search for one and then click the link), wait for the page to

load, look past all the ads, and so on.

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Actually, there are a lot of boring steps you could skip if you had a program that

downloaded the weather forecast for the next few days and printed it as plaintext. This

program uses the requests module from Chapter 12 to download data from the web.

Overall, the program does the following:

1. Reads the requested location from the command line

2. Downloads JSON weather data from OpenWeatherMap.org

3. Converts the string of JSON data to a Python data structure

4. Prints the weather for today and the next two days

So the code will need to do the following:

1. Join strings in sys.argv to get the location.

2. Call requests.get() to download the weather data.

3. Call json.loads() to convert the JSON data to a Python data structure.

4. Print the weather forecast.

For this project, open a new file editor window and save it as getOpenWeather.py. Then

visit https://openweathermap.org/api/ in your browser and sign up for a free account to

obtain an API key, also called an app ID, which for the OpenWeatherMap service is a string

code that looks something like '30144aba38018987d84710d0e319281e'. You don’t need to

pay for this service unless you plan on making more than 60 API calls per minute. Keep the

API key secret; anyone who knows it can write scripts that use your account’s usage quota.

Step 1: Get Location from the Command Line Argument

The input for this program will come from the command line. Make getOpenWeather.py look

like this:

#! python3

getOpenWeather.py - Prints the weather for a location from the command line.

APPID = 'YOUR_APPID_HERE'

import json, requests, sys

Compute location from command line arguments.

if len(sys.argv) < 2:

print('Usage: getOpenWeather.py city_name, 2-letter_country_code')

sys.exit()

location = ' '.join(sys.argv[1:])

TODO: Download the JSON data from OpenWeatherMap.org's API.

TODO: Load JSON data into a Python variable.

https://automatetheboringstuff.com/2e/chapter16/#calibre_link-372
https://openweathermap.org/api/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

In Python, command line arguments are stored in the sys.argv list. The APPID variable

should be set to the API key for your account. Without this key, your requests to the weather

service will fail. After the #! shebang line and import statements, the program will check that

there is more than one command line argument. (Recall that sys.argv will always have at least

one element, sys.argv[0], which contains the Python script’s filename.) If there is only one

element in the list, then the user didn’t provide a location on the command line, and a “usage”

message will be provided to the user before the program ends.

The OpenWeatherMap service requires that the query be formatted as the city name, a

comma, and a two-letter country code (like “US” for the United States). You can find a list of

these codes at https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2. Our script displays the

weather for the first city listed in the retrieved JSON text. Unfortunately, cities that share a

name, like Portland, Oregon, and Portland, Maine, will both be included, though the JSON

text will include longitude and latitude information to differentiate between the cities.

Command line arguments are split on spaces. The command line argument San Francisco,

US would make sys.argv hold ['getOpenWeather.py', 'San', 'Francisco,', 'US']. Therefore, call

the join() method to join all the strings except for the first in sys.argv. Store this joined string

in a variable named location.

Step 2: Download the JSON Data

OpenWeatherMap.org provides real-time weather information in JSON format. First you

must sign up for a free API key on the site. (This key is used to limit how frequently you

make requests on their server, to keep their bandwidth costs down.) Your program simply has

to download the page

at https://api.openweathermap.org/data/2.5/forecast/daily?q=<Location>&cnt=3&APPID=

<APIkey>, where <Location> is the name of the city whose weather you want and <API

key> is your personal API key. Add the following to getOpenWeather.py.

#! python3

getOpenWeather.py - Prints the weather for a location from the command line.

--snip--

Download the JSON data from OpenWeatherMap.org's API.

url

='https://api.openweathermap.org/data/2.5/forecast/daily?q=%s&cnt=3&APPID=%s '

% (location,

APPID)

response = requests.get(url)

response.raise_for_status()

Uncomment to see the raw JSON text:

#print(response.text)

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

ADUP/18CS55 Module5

Dept. of CSE, BRCE

TODO: Load JSON data into a Python variable.

We have location from our command line arguments. To make the URL we want to

access, we use the %s placeholder and insert whatever string is stored in location into that

spot in the URL string. We store the result in url and pass url to requests.get().

The requests.get() call returns a Response object, which you can check for errors by

calling raise_for_status(). If no exception is raised, the downloaded text will be

in response.text.

Step 3: Load JSON Data and Print Weather

The response.text member variable holds a large string of JSON-formatted data. To convert

this to a Python value, call the json.loads() function. The JSON data will look something like

this:

{'city': {'coord': {'lat': 37.7771, 'lon': -122.42},

'country': 'United States of America',

'id': '5391959',

'name': 'San Francisco',

'population': 0},

'cnt': 3,

'cod': '200',

'list': [{'clouds': 0,

'deg': 233,

'dt': 1402344000,

'humidity': 58,

'pressure': 1012.23,

'speed': 1.96,

'temp': {'day': 302.29,

'eve': 296.46,

'max': 302.29,

'min': 289.77,

'morn': 294.59,

'night': 289.77},

'weather': [{'description': 'sky is clear',

'icon': '01d',

--snip--

You can see this data by passing weatherData to pprint.pprint(). You may want to

check https://openweathermap.org/ for more documentation on what these fields mean. For

example, the online documentation will tell you that the 302.29 after 'day' is the daytime

temperature in Kelvin, not Celsius or Fahrenheit.

https://openweathermap.org/

ADUP/18CS55 Module5

Dept. of CSE, BRCE

The weather descriptions you want are after 'main' and 'description'. To neatly print them

out, add the following to getOpenWeather.py.

! python3

getOpenWeather.py - Prints the weather for a location from the command line.

--snip--

Load JSON data into a Python variable.

weatherData = json.loads(response.text)

Print weather descriptions.

➊ w = weatherData['list']

print('Current weather in %s:' % (location))

print(w[0]['weather'][0]['main'], '-', w[0]['weather'][0]['description'])

print()

print('Tomorrow:')

print(w[1]['weather'][0]['main'], '-', w[1]['weather'][0]['description'])

print()

print('Day after tomorrow:')

print(w[2]['weather'][0]['main'], '-', w[2]['weather'][0]['description'])

Notice how the code stores weatherData['list'] in the variable w to save you some

typing ➊. You use w[0], w[1], and w[2] to retrieve the dictionaries for today, tomorrow, and

the day after tomorrow’s weather, respectively. Each of these dictionaries has a 'weather' key,

which contains a list value. You’re interested in the first list item, a nested dictionary with

several more keys, at index 0. Here, we print the values stored in

the 'main' and 'description' keys, separated by a hyphen.

When this program is run with the command line argument getOpenWeather.py San

Francisco, CA, the output looks something like this:

Current weather in San Francisco, CA:

Clear - sky is clear

Tomorrow:

Clouds - few clouds

Day after tomorrow:

Clear - sky is clear

(The weather is one of the reasons I like living in San Francisco!)

Ideas for Similar Programs

ADUP/18CS55 Module5

Dept. of CSE, BRCE

Accessing weather data can form the basis for many types of programs. You can create

similar programs to do the following:

 Collect weather forecasts for several campsites or hiking trails to see which one will have

the best weather.

 Schedule a program to regularly check the weather and send you a frost alert if you need to

move your plants indoors. (Chapter 17 covers scheduling, and Chapter 18 explains how to

send email.)

 Pull weather data from multiple sites to show all at once, or calculate and show the average

of the multiple weather predictions.

SUMMARY

CSV and JSON are common plaintext formats for storing data. They are easy for programs to

parse while still being human readable, so they are often used for simple spreadsheets or web

app data. The csv and json modules greatly simplify the process of reading and writing to

CSV and JSON files.

The last few chapters have taught you how to use Python to parse information from a wide

variety of file formats. One common task is taking data from a variety of formats and parsing

it for the particular information you need. These tasks are often specific to the point that

commercial software is not optimally helpful. By writing your own scripts, you can make the

computer handle large amounts of data presented in these formats.

In Chapter 18, you’ll break away from data formats and learn how to make your programs

communicate with you by sending emails and text messages.

PRACTICE QUESTIONS

1. What are some features Excel spreadsheets have that CSV spread-sheets don’t?

2. What do you pass to csv.reader() and csv.writer() to create reader and writer objects?

3. What modes do File objects for reader and writer objects need to be opened in?

4. What method takes a list argument and writes it to a CSV file?

5. What do the delimiter and lineterminator keyword arguments do?

6. What function takes a string of JSON data and returns a Python data structure?

7. What function takes a Python data structure and returns a string of JSON data?

PRACTICE PROJECT

For practice, write a program that does the following.

Excel-to-CSV Converter

Excel can save a spreadsheet to a CSV file with a few mouse clicks, but if you had to convert

hundreds of Excel files to CSVs, it would take hours of clicking. Using the openpyxl module

https://automatetheboringstuff.com/2e/chapter16/#calibre_link-530
https://automatetheboringstuff.com/2e/chapter16/#calibre_link-567
https://automatetheboringstuff.com/2e/chapter16/#calibre_link-567

ADUP/18CS55 Module5

Dept. of CSE, BRCE

from Chapter 12, write a program that reads all the Excel files in the current working

directory and outputs them as CSV files.

A single Excel file might contain multiple sheets; you’ll have to create one CSV file

per sheet. The filenames of the CSV files should be <excel filename>_<sheet title>.csv,

where <excel filename> is the filename of the Excel file without the file extension (for

example, 'spam_data', not 'spam_data.xlsx') and <sheet title> is the string from

the Worksheet object’s title variable.

This program will involve many nested for loops. The skeleton of the program will look

something like this:

for excelFile in os.listdir('.'):

Skip non-xlsx files, load the workbook object.

for sheetName in wb.get_sheet_names():

Loop through every sheet in the workbook.

sheet = wb.get_sheet_by_name(sheetName)

Create the CSV filename from the Excel filename and sheet title.

Create the csv.writer object for this CSV file.

Loop through every row in the sheet.

for rowNum in range(1, sheet.max_row + 1):

rowData = [] # append each cell to this list

Loop through each cell in the row.

for colNum in range(1, sheet.max_column + 1):

Append each cell's data to rowData.

Write the rowData list to the CSV file.

csvFile.close()

Download the ZIP

file excelSpreadsheets.zip from https://nostarch.com/automatestuff2/ and unzip the

spreadsheets into the same directory as your program. You can use these as the files to test

the program on.

https://automatetheboringstuff.com/2e/chapter16/#calibre_link-372
https://nostarch.com/automatestuff2/

	PYTHON BASICS
	>>> 48565878 * 578453
	>>> (5 - 1) * ((7 + 1) / (3 - 1))
	This is a grammatically correct English sentence. This grammatically is sentence not English correct a.
	Assignment Statements

	>>> spam + eggs + spam
	>>> spam = 'Goodbye'
	Variable Names

	Al
	4
	Comments
	The print() Function
	The input() Function
	Printing the User’s Name
	The len() Function

	>>> len('My very energetic monster just scarfed nachos.')
	>>> print('I am ' + 29 + ' years old.')
	>>> 'I am ' + 29 + ' years old.'
	The str(), int(), and float() Functions

	>>> print('I am ' + str(29) + ' years old.')
	>>> spam = input() 101
	>>> spam = int(spam)

	FLOW CONTROL
	>>> 'hello' == 'hello'
	>>> 'hello' == 'Hello'
	Binary Boolean Operators
	The not Operator

	>>> (4 < 5) and (5 < 6)
	>>> (4 < 5) and (9 < 6)
	>>> (1 == 2) or (2 == 2)
	>>> 2 + 2 == 4 and not 2 + 2 == 5 and 2 * 2 == 2 + 2
	Conditions
	Blocks of Code
	if Statements
	else Statements
	elif Statements
	while Loop Statements

	An Annoying while Loop
	Al
	Albert
	break Statements
	continue Statements

	I'm fine, thanks. Who are you?
	Joe
	Mary
	Joe (1)
	swordfish
	for Loops and the range() Function

	An Equivalent while Loop
	The Starting, Stopping, and Stepping Arguments to range()
	from import Statements

	10
	15
	17
	16
	p
	s
	q
	>>> ['cat', 'bat', 'rat', 'elephant']
	>>> ['hello', 3.1415, True, None, 42]
	➊ >>> spam = ['cat', 'bat', 'rat', 'elephant']
	Getting Individual Values in a List with Indexes

	>>> spam = ['cat', 'bat', 'rat', 'elephant']
	>>> ['cat', 'bat', 'rat', 'elephant'][3]
	>>> 'The ' + spam[1] + ' ate the ' + spam[0] + '.'
	>>> spam = ['cat', 'bat', 'rat', 'elephant'] (1)
	>>> spam = ['cat', 'bat', 'rat', 'elephant'] (2)
	>>> spam = [['cat', 'bat'], [10, 20, 30, 40, 50]]
	Negative Indexes

	>>> spam = ['cat', 'bat', 'rat', 'elephant'] (3)
	>>> 'The ' + spam[-1] + ' is afraid of the ' + spam[-3] + '.'
	Getting a List from Another List with Slices

	>>> spam = ['cat', 'bat', 'rat', 'elephant'] (4)
	>>> spam = ['cat', 'bat', 'rat', 'elephant'] (5)
	Getting a List’s Length with the len() Function

	>>> spam = ['cat', 'dog', 'moose']
	Changing Values in a List with Indexes

	>>> spam = ['cat', 'bat', 'rat', 'elephant'] (6)
	>>> spam[2] = spam[1]
	>>> spam[-1] = 12345
	List Concatenation and List Replication

	>>> [1, 2, 3] + ['A', 'B', 'C']
	>>> ['X', 'Y', 'Z'] * 3
	>>> spam = [1, 2, 3]
	Removing Values from Lists with del Statements

	>>> spam = ['cat', 'bat', 'rat', 'elephant'] (7)
	Zophie
	Pooka
	Simon
	Lady Macbeth
	Fat-tail
	Miss Cleo
	Using for Loops with Lists

	>>> supplies = ['pens', 'staplers', 'flamethrowers', 'binders']
	... print('Index ' + str(i) + ' in supplies is: ' + supplies[i])
	The in and not in Operators

	>>> 'howdy' in ['hello', 'hi', 'howdy', 'heyas']
	>>> spam = ['hello', 'hi', 'howdy', 'heyas']
	>>> 'howdy' not in spam
	>>> 'cat' not in spam
	Footfoot
	The Multiple Assignment Trick

	>>> cat = ['fat', 'gray', 'loud']
	>>> disposition = cat[2]
	>>> cat = ['fat', 'gray', 'loud'] (1)
	>>> cat = ['fat', 'gray', 'loud'] (2)
	Using the enumerate() Function with Lists

	>>> supplies = ['pens', 'staplers', 'flamethrowers', 'binders'] (1)
	... print('Index ' + str(index) + ' in supplies is: ' + item)
	Using the random.choice() and random.shuffle() Functions with Lists

	>>> pets = ['Dog', 'Cat', 'Moose']
	>>> random.choice(pets)
	>>> random.choice(pets) (1)
	>>> people = ['Alice', 'Bob', 'Carol', 'David']
	>>> random.shuffle(people)
	>>> spam += ' world!'
	>>> bacon = ['Zophie']
	Finding a Value in a List with the index() Method

	>>> spam = ['hello', 'hi', 'howdy', 'heyas'] (1)
	>>> spam.index('heyas')
	>>> spam.index('howdy howdy howdy')
	>>> spam = ['Zophie', 'Pooka', 'Fat-tail', 'Pooka']
	Adding Values to Lists with the append() and insert() Methods

	>>> spam = ['cat', 'dog', 'bat']
	>>> spam = ['cat', 'dog', 'bat'] (1)
	>>> eggs.append('world')
	>>> bacon.insert(1, 'world')
	Removing Values from Lists with the remove() Method

	>>> spam = ['cat', 'bat', 'rat', 'elephant'] (8)
	>>> spam = ['cat', 'bat', 'rat', 'elephant'] (9)
	>>> spam = ['cat', 'bat', 'rat', 'cat', 'hat', 'cat']
	Sorting the Values in a List with the sort() Method

	>>> spam = [2, 5, 3.14, 1, -7]
	>>> spam = ['ants', 'cats', 'dogs', 'badgers', 'elephants']
	>>> spam.sort(reverse=True)
	>>> spam = [1, 3, 2, 4, 'Alice', 'Bob']
	>>> spam = ['Alice', 'ants', 'Bob', 'badgers', 'Carol', 'cats']
	>>> spam = ['a', 'z', 'A', 'Z']
	Reversing the Values in a List with the reverse() Method

	>>> spam = ['cat', 'dog', 'moose'] (1)
	... print('* * * ' + i + ' * * *')
	Mutable and Immutable Data Types

	>>> name = 'Zophie a cat'
	>>> name = 'Zophie a cat' (1)
	>>> eggs = [1, 2, 3]
	>>> eggs = [1, 2, 3] (1)
	The Tuple Data Type

	>>> eggs = ('hello', 42, 0.5)
	>>> eggs = ('hello', 42, 0.5) (1)
	>>> type(('hello',))
	Converting Types with the list() and tuple() Functions

	>>> tuple(['cat', 'dog', 5])
	>>> list(('cat', 'dog', 5))
	➊ >>> spam = [0, 1, 2, 3, 4, 5]
	Identity and the id() Function
	Passing References
	The copy Module’s copy() and deepcopy() Functions

	>>> spam = ['A', 'B', 'C', 'D']
	>>> cheese = copy.copy(spam)
	Comma Code
	Coin Flip Streaks
	Character Picture Grid

	5
	>>> myCat = {'size': 'fat', 'color': 'gray', 'disposition': 'loud'}
	>>> 'My cat has ' + myCat['color'] + ' fur.'
	>>> spam = {12345: 'Luggage Combination', 42: 'The Answer'}
	Dictionaries vs. Lists

	>>> spam = ['cats', 'dogs', 'moose']
	>>> eggs = {'name': 'Zophie', 'species': 'cat', 'age': '8'}
	>>> spam = {'name': 'Zophie', 'age': 7}
	Alice
	Dec 5
	The keys(), values(), and items() Methods

	>>> spam = {'color': 'red', 'age': 42}
	>>> for k in spam.keys():
	>>> for i in spam.items():
	>>> spam = {'color': 'red', 'age': 42} (1)
	>>> list(spam.keys())
	>>> spam = {'color': 'red', 'age': 42} (2)
	... print('Key: ' + k + ' Value: ' + str(v))
	Checking Whether a Key or Value Exists in a Dictionary

	>>> spam = {'name': 'Zophie', 'age': 7} (1)
	>>> 'Zophie' in spam.values()
	>>> 'color' in spam.keys()
	>>> 'color' not in spam.keys()
	The get() Method

	>>> picnicItems = {'apples': 5, 'cups': 2}
	>>> 'I am bringing ' + str(picnicItems.get('eggs', 0)) + ' eggs.'
	>>> picnicItems = {'apples': 5, 'cups': 2} (1)
	The setdefault() Method

	>>> spam = {'name': 'Pooka', 'age': 5}
	>>> spam.setdefault('color', 'white')
	import pprint
	A Tic-Tac-Toe Board

	def printBoard(board):
	print(board['mid-L'] + '|' + board['mid-M'] + '|' + board['mid-R']) print('-+-+-')
	theBoard = {'top-L': 'O', 'top-M': 'O', 'top-R': 'O', 'mid-L': 'X', 'mid-M':
	theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ', 'mid-L': ' ', 'mid-M':
	turn = 'X'
	➊ printBoard(theBoard)
	➋ move = input()
	➍ if turn == 'X': turn = 'O'
	turn = 'X' (1)
	mid-M
	low-M
	Nested Dictionaries and Lists
	Chess Dictionary Validator
	Fantasy Game Inventory
	List to Dictionary Function for Fantasy Game Inventory

	PATTERN MATCHING WITH REGULAR EXPRESSIONS
	Creating Regex Objects
	>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')
	Matching Regex Objects

	>>> phoneNumRegex=re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')
	>>> print('Phone number found:'+mo.group())
	Review of Regular Expression Matching
	Grouping with Parentheses

	>>> phoneNumRegex = re.compile(r'(\d\d\d)-(\d\d\d-\d\d\d\d)')
	>>> areaCode, mainNumber = mo.groups()
	>>> print(mainNumber)
	>>> phoneNumRegex = re.compile(r'(\(\d\d\d\)) (\d\d\d-\d\d\d\d)')
	>>> re.compile(r'(\(Parentheses\)')
	Matching Multiple Groups with the Pipe

	>>> heroRegex = re.compile (r'Batman|Tina Fey')
	>>> mo2 = heroRegex.search('Tina Fey and Batman')
	>>> batRegex = re.compile(r'Bat(man|mobile|copter|bat)')
	Optional Matching with the Question Mark
	>>> batRegex = re.compile(r'Bat(wo)?man')
	>>> mo2 = batRegex.search('The Adventures of Batwoman')
	>>> phoneRegex = re.compile(r'(\d\d\d-)?\d\d\d-\d\d\d\d')
	>>> mo2 = phoneRegex.search('My number is 555-4242')
	Matching Zero or More with the Star
	>>> batRegex = re.compile(r'Bat(wo)*man')
	>>> mo2 = batRegex.search('The Adventures of Batwoman') (1)
	>>> mo3 = batRegex.search('The Adventures of Batwowowowoman')
	Matching One or More with the Plus
	>>> batRegex = re.compile(r'Bat(wo)+man')
	>>> mo2 = batRegex.search('The Adventures of Batwowowowoman')
	>>> mo3 = batRegex.search('The Adventures of Batman')
	Matching Specific Repetitions with Braces
	>>> haRegex = re.compile(r'(Ha){3}')
	>>> mo2 = haRegex.search('Ha')
	>>> greedyHaRegex = re.compile(r'(Ha){3,5}')
	>>> nongreedyHaRegex = re.compile(r'(Ha){3,5}?')
	>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d') (1)
	>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d') # has no groups
	>>> phoneNumRegex = re.compile(r'(\d\d\d)-(\d\d\d)-(\d\d\d\d)') # has groups
	>>> xmasRegex = re.compile(r'\d+\s\w+')
	swans, 6 geese, 5 rings, 4 birds, 3 hens, 2 doves, 1 partridge')
	>>> vowelRegex = re.compile(r'[aeiouAEIOU]')
	>>> consonantRegex = re.compile(r'[^aeiouAEIOU]')
	>>> beginsWithHello = re.compile(r'^Hello')
	>>> beginsWithHello.search('He said hello.') == None
	>>> endsWithNumber = re.compile(r'\d$')
	>>> endsWithNumber.search('Your number is forty two.') == None
	>>> wholeStringIsNum = re.compile(r'^\d+$')
	>>> wholeStringIsNum.search('12345xyz67890') == None
	>>> wholeStringIsNum.search('12 34567890') == None
	>>> atRegex = re.compile(r'.at')
	Matching Everything with Dot-Star
	>>> nameRegex = re.compile(r'First Name: (.*) Last Name: (.*)')
	>>> nongreedyRegex = re.compile(r'<.*?>')
	>>> greedyRegex = re.compile(r'<.*>')
	Matching Newlines with the Dot Character
	>>> noNewlineRegex = re.compile('.*')
	\nUphold the law.').group()
	>>> newlineRegex = re.compile('.*', re.DOTALL)
	\nUphold the law.').group() (1)
	>>> regex1 = re.compile('RoboCop')
	>>> regex3 = re.compile('robOcop')
	>>> robocop = re.compile(r'robocop', re.I)
	>>> robocop.search('ROBOCOP protects the innocent.').group()
	>>> robocop.search('Al, why does your programming book talk about robocop so
	>>> namesRegex = re.compile(r'Agent \w+')
	>>> agentNamesRegex = re.compile(r'Agent (\w)\w*')
	>>> someRegexValue = re.compile('foo', re.IGNORECASE | re.DOTALL)
	>>> someRegexValue = re.compile('foo', re.IGNORECASE | re.DOTALL | re.VERBOSE)
	Step 1: Create a Regex for Phone Numbers
	Step 2: Create a Regex for Email Addresses
	# Create email regex. emailRegex = re.compile(r'''(
	➋ @ # @ symbol
)''', re.VERBOSE)
	Step 3: Find All Matches in the Clipboard Text
	# Find matches in clipboard text. text = str(pyperclip.paste())
	➋ for groups in phoneRegex.findall(text):
	phoneNum += ' x' + groups[8] matches.append(phoneNum)
	Step 4: Join the Matches into a String for the Clipboard
	# Copy results to the clipboard. if len(matches) > 0:
	else:
	Running the Program
	Ideas for Similar Programs
	Date Detection
	Strong Password Detection
	Regex Version of the strip() Method

	>>> os.path.join('usr', 'bin', 'spam')
	>>> myFiles = ['accounts.txt', 'details.csv', 'invite.docx']
	>>> os.chdir('C:\\Windows\\System32')
	>>> os.chdir('C:\\ThisFolderDoesNotExist')
	>>> os.makedirs('C:\\delicious\\walnut\\waffles')
	>>> os.path.abspath('.')
	>>> os.path.abspath('.\\Scripts')
	>>> os.path.isabs('.')
	>>> os.path.isabs(os.path.abspath('.'))
	>>> os.path.relpath('C:\\Windows', 'C:\\')
	>>> os.path.relpath('C:\\Windows', 'C:\\spam\\eggs')
	>>> path = 'C:\\Windows\\System32\\calc.exe'
	>>> os.path.dirname(path)
	>>> calcFilePath = 'C:\\Windows\\System32\\calc.exe'
	>>> (os.path.dirname(calcFilePath), os.path.basename(calcFilePath))
	>>> calcFilePath.split(os.path.sep)
	>>> '/usr/bin'.split(os.path.sep)
	>>> os.path.getsize('C:\\Windows\\System32\\calc.exe')
	>>> os.listdir('C:\\Windows\\System32')
	>>> for filename in os.listdir('C:\\Windows\\System32'):
	>>> print(totalSize)
	>>> os.path.exists('C:\\Windows')
	>>> os.path.exists('C:\\some_made_up_folder')
	>>> os.path.isdir('C:\\Windows\\System32')
	>>> os.path.isfile('C:\\Windows\\System32')
	>>> os.path.isdir('C:\\Windows\\System32\\calc.exe')
	>>> os.path.isfile('C:\\Windows\\System32\\calc.exe')
	>>> os.path.exists('D:\\')
	>>> helloContent = helloFile.read()
	>>> sonnetFile = open('sonnet29.txt')
	>>> baconFile = open('bacon.txt', 'w')
	>>> baconFile.close()
	>>> baconFile.write('Bacon is not a vegetable.')
	>>> baconFile.close() (1)
	>>> content = baconFile.read()
	>>> shelfFile = shelve.open('mydata')
	>>> shelfFile['cats'] = cats
	>>> shelfFile = shelve.open('mydata') (1)
	>>> shelfFile['cats']
	>>> shelfFile.close()
	>>> shelfFile = shelve.open('mydata') (2)
	>>> list(shelfFile.values())
	>>> shelfFile.close() (1)
	>>> cats = [{'name': 'Zophie', 'desc': 'chubby'}, {'name': 'Pooka', 'desc': 'fluffy'}]
	>>> fileObj = open('myCats.py', 'w')
	>>> myCats.cats[0]['name']
	# Create the quiz and answer key files.
	❷ answerKeyFile = open('capitalsquiz_answers%s.txt' % (quizNum + 1), 'w')
	❸ quizFile.write('Name:\n\nDate:\n\nPeriod:\n\n')
	# Shuffle the order of the states.
	❹ random.shuffle(states)
	# Loop through all 50 states, making a question for each. for questionNum in range(50):
	❶ correctAnswer = capitals[states[questionNum]]
	❸ del wrongAnswers[wrongAnswers.index(correctAnswer)]
	❺ answerOptions = wrongAnswers + [correctAnswer]
	# TODO: Write the question and answer options to the quiz file.
	# Write the question and the answer options to the quiz file. quizFile.write('%s. What is the capital of %s?\n' % (questionNum + 1,
	❶ for i in range(4):
	# Write the answer key to a file.
	quizFile.close() answerKeyFile.close()
	# Save clipboard content.
	❷ mcbShelf[sys.argv[2]] = pyperclip.paste() elif len(sys.argv) == 2:
	# List keywords and load content.
	❷ pyperclip.copy(str(list(mcbShelf.keys()))) elif sys.argv[1] in mcbShelf:
	silly
	chandelier
	screamed
	pickup truck
	ORGANIZING FILES
	Copying Files and Folders

	>>> import shutil, os
	➊ >>> shutil.copy(p / 'spam.txt', p / 'some_folder')
	➋ >>> shutil.copy(p / 'eggs.txt', p / 'some_folder/eggs2.txt')
	>>> import shutil, os (1)
	>>> shutil.copytree(p / 'spam', p / 'spam_backup')
	Moving and Renaming Files and Folders

	>>> shutil.move('C:\\bacon.txt', 'C:\\eggs')
	>>> shutil.move('C:\\bacon.txt', 'C:\\eggs\\new_bacon.txt')
	>>> shutil.move('C:\\bacon.txt', 'C:\\eggs') (1)
	>>> shutil.move('spam.txt', 'c:\\does_not_exist\\eggs\\ham')
	Permanently Deleting Files and Folders
	Safe Deletes with the send2trash Module

	>>> import send2trash
	>>> baconFile.write('Bacon is not a vegetable.') (1)
	>>> baconFile.close() (2)
	Reading ZIP Files

	>>> import zipfile, os
	>>> exampleZip = zipfile.ZipFile(p / 'example.zip')
	>>> spamInfo = exampleZip.getinfo('spam.txt')
	>>> spamInfo.compress_size
	➊ >>> f'Compressed file is {round(spamInfo.file_size / spamInfo
)
	>>> exampleZip.close()
	Extracting from ZIP Files

	>>> import zipfile, os (1)
	>>> exampleZip = zipfile.ZipFile(p / 'example.zip') (1)
	>>> exampleZip.close() (1)
	>>> exampleZip.extract('spam.txt')
	>>> exampleZip.extract('spam.txt', 'C:\\some\\new\\folders')
	>>> exampleZip.close() (2)
	Creating and Adding to ZIP Files

	>>> newZip = zipfile.ZipFile('new.zip', 'w')
	Step 1: Create a Regex for American-Style Dates
	Step 2: Identify the Date Parts from the Filenames

	# Loop over the files in the working directory. for amerFilename in os.listdir('.'):
	# Skip files without a date.
	➋ continue
	monthPart = mo.group(2) dayPart = mo.group(4) yearPart = mo.group(6) afterPart = mo.group(8)
	Step 3: Form the New Filename and Rename the Files

	# Form the European-style filename.
	# Get the full, absolute file paths. absWorkingDir = os.path.abspath('.')
	# Rename the files.
	➌ #shutil.move(amerFilename, euroFilename) # uncomment after testing
	Ideas for Similar Programs
	Step 1: Figure Out the ZIP File’s Name
	Step 2: Create the New ZIP File

	# Create the ZIP file. print(f'Creating {zipFilename}...')
	Step 3: Walk the Directory Tree and Add to the ZIP File

	# Walk the entire folder tree and compress the files in each folder.
	# Add the current folder to the ZIP file.
	# Add all the files in this folder to the ZIP file.
	newBase = os.path.basename(folder) + '_'
	backupZip.write(os.path.join(foldername, filename)) backupZip.close()
	Ideas for Similar Programs
	Selective Copy
	Deleting Unneeded Files
	Filling in the Gaps

	CLASSES AND OBJECTS
	Programmer-defined Types
	<class ' main .Point'>
	< main .Point object at 0x003C1BF0>

	Attributes
	Rectangles
	A sample output would be:

	Copying
	Debugging
	Pure Functions
	Modifiers
	Prototyping v/s Planning
	Object-Oriented Features
	Printing objects
	class Time:
	print('%.2d:%.2d:%.2d' % (time.hour, time.minute, time.second))
	Another example
	A more complicated example

	The init () Method
	Thus, state of the object can be understood by instance attributes.

	Operator Overloading

	Inheritance
	Card objects
	Class attributes
	Comparing cards
	Decks
	Printing the deck
	Add, remove, shuffle and sort
	class classname(base class):
	Class diagrams
	Data encapsulation
	GENERAL OOP CONCEPTS
	Class: A class is a user defined data type which binds data and functions together into a single entity.
	Class diagram for Human Being
	Object : An object is an instance of a class.
	Encapsulation: The process of binding data and code together into a single entity is called encapsulation.
	Data Abstraction: Hiding the implementation details from the end user.
	Inheritance: Making use of existing code.
	MODULE-V WEB SCRAPING
	>>> import webbrowser
	Step 1: Figure Out the URL
	Step 2: Handle the Command Line Arguments
	Step 3: Handle the Clipboard Content and Launch the Browser

	else:
	Ideas for Similar Programs
	Downloading a Web Page with the requests.get() Function

	➊ >>> res = requests.get('https://automatetheboringstuff.com/files/rj.txt')
	➋ >>> res.status_code == requests.codes.ok
	>>> print(res.text[:250])
	Checking for Errors

	>>> res = requests.get('https://inventwithpython.com/page_that_does_not_exist')
	>>> res = requests.get('https://automatetheboringstuff.com/files/rj.txt')
	>>> playFile = open('RomeoAndJuliet.txt', 'wb')
	>>> playFile.close()
	HTML
	Resources for Learning HTML
	A Quick Refresher
	Viewing the Source HTML of a Web Page
	Opening Your Browser’s Developer Tools
	Using the Developer Tools to Find HTML Elements
	Creating a BeautifulSoup Object from HTML

	>>> import requests, bs4
	>>> res.raise_for_status()
	>>> type(noStarchSoup)
	>>> exampleFile = open('example.html')
	>>> type(exampleSoup)
	Finding an Element with the select() Method

	>>> exampleFile = open('example.html') (1)
	>>> elems = exampleSoup.select('#author')
	>>> elems[0].getText()
	>>> pElems = exampleSoup.select('p')
	>>> pElems[0].getText()
	>>> pElems[1].getText()
	>>> pElems[2].getText()
	Getting Data from an Element’s Attributes

	>>> soup = bs4.BeautifulSoup(open('example.html'), 'html.parser')
	>>> spanElem.get('id')
	>>> spanElem.get('some_nonexistent_addr') == None
	Step 1: Get the Command Line Arguments and Request the Search Page
	Step 2: Find All the Results

	# Retrieve top search result links.
	linkElems = soup.select('.package-snippet')
	Step 3: Open Web Browsers for Each Result

	for i in range(numOpen):
	Ideas for Similar Programs
	Step 1: Design the Program
	Step 2: Download the Web Page

	# Download the page. print('Downloading page %s...' % url) res = requests.get(url) res.raise_for_status()
	Step 3: Find and Download the Comic Image

	# Find the URL of the comic image. comicElem = soup.select('#comic img') if comicElem == []:
	comicUrl = 'https:' + comicElem[0].get('src') # Download the image.
	Step 4: Save the Image and Find the Previous Comic

	# Save the image to ./xkcd.
	for chunk in res.iter_content(100000): imageFile.write(chunk)
	# Get the Prev button's url.
	url = 'https://xkcd.com' + prevLink.get('href')
	Ideas for Similar Programs
	Starting a selenium-Controlled Browser

	>>> from selenium import webdriver
	>>> browser.get('https://inventwithpython.com')
	Finding Elements on the Page
	Clicking the Page

	>>> from selenium import webdriver (1)
	>>> browser.get('https://inventwithpython.com') (1)
	Filling Out and Submitting Forms

	>>> from selenium import webdriver (2)
	>>> browser.get('https://login.metafilter.com')
	>>> passwordElem = browser.find_element_by_id('user_pass')
	>>> passwordElem.submit()
	Sending Special Keys

	>>> from selenium import webdriver (3)
	>>> browser = webdriver.Firefox()
	>>> htmlElem = browser.find_element_by_tag_name('html')
	Clicking Browser Buttons
	More Information on Selenium
	Command Line Emailer
	Image Site Downloader
	2048
	Link Verification

	WORKING WITH EXCEL SPREADSHEETS
	Opening Excel Documents with OpenPyXL

	>>> wb = openpyxl.load_workbook('example.xlsx')
	Getting Sheets from the Workbook

	>>> wb = openpyxl.load_workbook('example.xlsx') (1)
	Getting Cells from the Sheets

	>>> wb = openpyxl.load_workbook('example.xlsx') (2)
	>>> 'Row %s, Column %s is %s' % (c.row, c.column, c.value)
	>>> 'Cell %s is %s' % (c.coordinate, c.value)
	>>> sheet['C1'].value
	>>> sheet.cell(row=1, column=2)
	>>> sheet.cell(row=1, column=2).value
	... print(i, sheet.cell(row=i, column=2).value)
	>>> wb = openpyxl.load_workbook('example.xlsx') (3)
	Converting Between Column Letters and Numbers

	>>> from openpyxl.utils import get_column_letter, column_index_from_string
	>>> get_column_letter(27)
	>>> get_column_letter(900)
	>>> wb = openpyxl.load_workbook('example.xlsx') (4)
	>>> get_column_letter(sheet.max_column)
	>>> column_index_from_string('AA')
	Getting Rows and Columns from the Sheets

	>>> wb = openpyxl.load_workbook('example.xlsx') (5)
	➊ >>> for rowOfCellObjects in sheet['A1':'C3']:
	... print(cellObj.coordinate, cellObj.value)
	>>> wb = openpyxl.load_workbook('example.xlsx') (6)
	>>> for cellObj in list(sheet.columns)[1]: print(cellObj.value)
	Workbooks, Sheets, Cells
	Step 1: Read the Spreadsheet Data
	Step 2: Populate the Data Structure

	>>> countyData['AK']['Anchorage']['pop']
	>>> countyData['AK']['Anchorage']['tracts']
	# Make sure the key for this state exists.
	# Make sure the key for this county in this state exists.
	# Each row represents one census tract, so increment by one.
	# Increase the county pop by the pop in this census tract.
	Step 3: Write the Results to a File

	# Open a new text file and write the contents of countyData to it. print('Writing results...')
	print('Done.')
	>>> import census2010
	>>> anchoragePop = census2010.allData['AK']['Anchorage']['pop']
	Ideas for Similar Programs
	Creating and Saving Excel Documents

	>>> sheet = wb.active
	>>> wb = openpyxl.load_workbook('example.xlsx') (7)
	>>> sheet.title = 'Spam Spam Spam'
	Creating and Removing Sheets

	>>> wb = openpyxl.Workbook()
	>>> wb.create_sheet(index=0, title='First Sheet')
	>>> wb.create_sheet(index=2, title='Middle Sheet')
	>>> del wb['Middle Sheet']
	Writing Values to Cells

	>>> wb = openpyxl.Workbook() (1)
	>>> sheet['A1'].value
	Step 1: Set Up a Data Structure with the Update Information
	Step 2: Check All Rows and Update Incorrect Prices

	# Loop through the rows and update the prices.
	➋ produceName = sheet.cell(row=rowNum, column=1).value
	sheet.cell(row=rowNum, column=2).value = PRICE_UPDATES[produceName]
	Ideas for Similar Programs

	>>> from openpyxl.styles import Font
	>>> sheet = wb['Sheet']
	>>> sheet['A1'] = 'Hello, world!'
	>>> from openpyxl.styles import Font (1)
	>>> sheet = wb['Sheet'] (1)
	>>> sheet['A1'].font = fontObj1
	>>> fontObj2 = Font(size=24, italic=True)
	>>> sheet['B3'] = '24 pt Italic'
	>>> sheet['B9'] = '=SUM(B1:B8)'
	>>> wb = openpyxl.Workbook() (2)
	>>> sheet['A1'] = 200
	>>> wb.save('writeFormula.xlsx')
	Setting Row Height and Column Width

	>>> wb = openpyxl.Workbook() (3)
	>>> sheet['A1'] = 'Tall row'
	>>> sheet.row_dimensions[1].height = 70
	>>> wb.save('dimensions.xlsx')
	Merging and Unmerging Cells

	>>> wb = openpyxl.Workbook() (4)
	>>> sheet['A1'] = 'Twelve cells merged together.'
	>>> sheet['C5'] = 'Two merged cells.'
	>>> wb = openpyxl.load_workbook('merged.xlsx')
	>>> sheet.unmerge_cells('C5:D5')
	Freezing Panes

	>>> wb = openpyxl.load_workbook('produceSales.xlsx')
	>>> wb.save('freezeExample.xlsx')
	>>> wb = openpyxl.Workbook() (5)
	... sheet['A' + str(i)] = i
	>>> refObj = openpyxl.chart.Reference(sheet, min_col=1, min_row=1, max_col=1, max_row=10)
	>>> chartObj = openpyxl.chart.BarChart()
	>>> chartObj.append(seriesObj)
	>>> wb.save('sampleChart.xlsx')
	Multiplication Table Maker
	Blank Row Inserter
	Spreadsheet Cell Inverter
	Text Files to Spreadsheet
	Spreadsheet to Text Files

	WORKING WITH PDF AND WORD DOCUMENTS
	Extracting Text from PDFs

	>>> pdfFileObj = open('meetingminutes.pdf', 'rb')
	➋ >>> pageObj = pdfReader.getPage(0)
	>>> pdfFileObj.close()
	Decrypting PDFs

	>>> pdfReader = PyPDF2.PdfFileReader(open('encrypted.pdf', 'rb'))
	>>> pdfReader.getPage(0)
	>>> pdfReader = PyPDF2.PdfFileReader(open('encrypted.pdf', 'rb')) (1)
	>>> pageObj = pdfReader.getPage(0)
	Creating PDFs

	>>> pdf1File = open('meetingminutes.pdf', 'rb')
	➊ >>> pdf1Reader = PyPDF2.PdfFileReader(pdf1File)
	➌ >>> pdfWriter = PyPDF2.PdfFileWriter()
	➍ pageObj = pdf1Reader.getPage(pageNum)
	>>> for pageNum in range(pdf2Reader.numPages):
	➎ pdfWriter.addPage(pageObj)
	>>> pdfWriter.write(pdfOutputFile)
	>>> pdf1File.close()
	>>> minutesFile = open('meetingminutes.pdf', 'rb')
	➊ >>> page = pdfReader.getPage(0)
	>>> pdfWriter = PyPDF2.PdfFileWriter()
	➌ >>> resultPdfFile = open('rotatedPage.pdf', 'wb')
	>>> resultPdfFile.close()
	>>> minutesFile = open('meetingminutes.pdf', 'rb') (1)
	➋ >>> minutesFirstPage = pdfReader.getPage(0)
	➍ >>> minutesFirstPage.mergePage(pdfWatermarkReader.getPage(0))
	➏ >>> pdfWriter.addPage(minutesFirstPage)
	pageObj = pdfReader.getPage(pageNum) pdfWriter.addPage(pageObj)
	>>> pdfWriter.write(resultPdfFile)
	>>> resultPdfFile.close() (1)
	>>> pdfFile = open('meetingminutes.pdf', 'rb')
	>>> pdfWriter = PyPDF2.PdfFileWriter() (1)
	➊ >>> pdfWriter.encrypt('swordfish')
	>>> pdfWriter.write(resultPdf)
	Step 1: Find All PDF Files
	Step 2: Open Each PDF

	# Loop through all the PDF files. for filename in pdfFiles:
	pdfReader = PyPDF2.PdfFileReader(pdfFileObj)
	Step 3: Add Each Page

	# Loop through all the pages (except the first) and add them.
	Step 4: Save the Results

	# Save the resulting PDF to a file. pdfOutput = open('allminutes.pdf', 'wb') pdfWriter.write(pdfOutput) pdfOutput.close()
	Ideas for Similar Programs
	Reading Word Documents

	➊ >>> doc = docx.Document('demo.docx')
	➎ >>> len(doc.paragraphs[1].runs)
	➏ >>> doc.paragraphs[1].runs[0].text
	➐ >>> doc.paragraphs[1].runs[1].text
	➑ >>> doc.paragraphs[1].runs[2].text
	➒ >>> doc.paragraphs[1].runs[3].text
	Getting the Full Text from a .docx File

	>>> print(readDocx.getText('demo.docx'))
	Styling Paragraph and Run Objects
	Creating Word Documents with Nondefault Styles
	Run Attributes

	>>> doc = docx.Document('demo.docx')
	>>> doc.paragraphs[0].style # The exact id may be different:
	>>> doc.paragraphs[0].style = 'Normal'
	>>> (doc.paragraphs[1].runs[0].text, doc.paragraphs[1].runs[1].text, doc. paragraphs[1].runs[2].text, doc.paragraphs[1].runs[3].text)
	>>> doc.paragraphs[1].runs[0].style = 'QuoteChar'
	>>> doc.paragraphs[1].runs[3].underline = True
	Writing Word Documents

	>>> doc = docx.Document()
	>>> doc.save('helloworld.docx')
	>>> doc = docx.Document() (1)
	>>> paraObj1 = doc.add_paragraph('This is a second paragraph.')
	>>> paraObj1.add_run(' This text is being added to the second paragraph.')
	>>> doc.save('multipleParagraphs.docx')
	>>> doc.add_paragraph('Hello, world!', 'Title')
	Adding Headings

	>>> doc = docx.Document() (2)
	>>> doc.add_heading('Header 1', 1)
	>>> doc.add_heading('Header 2', 2)
	>>> doc.add_heading('Header 3', 3)
	>>> doc.add_heading('Header 4', 4)
	>>> doc.save('headings.docx')
	Adding Line and Page Breaks

	>>> doc = docx.Document() (3)
	➊ >>> doc.paragraphs[0].runs[0].add_break(docx.enum.text.WD_BREAK.PAGE)
	>>> doc.save('twoPage.docx')
	Adding Pictures

	>>> doc.add_picture('zophie.png', width=docx.shared.Inches(1), height=docx.shared.Cm(4))
	PDF Paranoia
	Custom Invitations as Word Documents
	Brute-Force PDF Password Breaker

	16
	reader Objects

	➋ >>> exampleFile = open('example.csv')
	➍ >>> exampleData = list(exampleReader)
	>>> exampleData[0][0]
	>>> exampleData[0][1]
	>>> exampleData[0][2]
	>>> exampleData[1][1]
	>>> exampleData[6][1]
	Reading Data from reader Objects in a for Loop

	>>> exampleFile = open('example.csv')
	>>> for row in exampleReader:
	writer Objects

	➊ >>> outputFile = open('output.csv', 'w', newline='')
	>>> outputWriter.writerow(['spam', 'eggs', 'bacon', 'ham'])
	>>> outputWriter.writerow(['Hello, world!', 'eggs', 'bacon', 'ham'])
	>>> outputWriter.writerow([1, 2, 3.141592, 4])
	>>> outputFile.close()
	The delimiter and lineterminator Keyword Arguments

	>>> csvFile = open('example.tsv', 'w', newline='')
	>>> csvWriter.writerow(['apples', 'oranges', 'grapes'])
	>>> csvWriter.writerow(['eggs', 'bacon', 'ham'])
	>>> csvWriter.writerow(['spam', 'spam', 'spam', 'spam', 'spam', 'spam'])
	DictReader and DictWriter CSV Objects

	>>> exampleFile = open('exampleWithHeader.csv')
	>>> for row in exampleDictReader:
	>>> exampleFile = open('example.csv') (1)
	>>> for row in exampleDictReader: (1)
	>>> outputFile = open('output.csv', 'w', newline='')
	>>> outputDictWriter.writeheader()
	>>> outputDictWriter.writerow({'Name': 'Bob', 'Phone': '555-9999'})
	>>> outputDictWriter.writerow({'Phone': '555-5555', 'Name': 'Carol', 'Pet': 'dog'})
	>>> outputFile.close() (1)
	Step 1: Loop Through Each CSV File
	Step 2: Read in the CSV File

	# Read the CSV file in (skipping first row). csvRows = []
	if readerObj.line_num == 1: continue # skip first row
	Step 3: Write Out the CSV File Without the First Row

	# Write out the CSV file.
	csvWriter = csv.writer(csvFileObj) for row in csvRows:
	Ideas for Similar Programs
	Reading JSON with the loads() Function

	>>> stringOfJsonData = '{"name": "Zophie", "isCat": true, "miceCaught": 0, "felineIQ": null}'
	>>> jsonDataAsPythonValue = json.loads(stringOfJsonData)
	Writing JSON with the dumps() Function

	>>> pythonValue = {'isCat': True, 'miceCaught': 0, 'name': 'Zophie', 'felineIQ': None}
	>>> stringOfJsonData = json.dumps(pythonValue)
	Step 1: Get Location from the Command Line Argument
	Step 2: Download the JSON Data

	# Download the JSON data from OpenWeatherMap.org's API. url
	% (location, APPID)
	# Uncomment to see the raw JSON text: #print(response.text)
	Step 3: Load JSON Data and Print Weather

	# Load JSON data into a Python variable. weatherData = json.loads(response.text)
	➊ w = weatherData['list']
	print('Tomorrow:')
	print('Day after tomorrow:')
	Ideas for Similar Programs
	Excel-to-CSV Converter

